
Page 1 MRCET-Artificial Intelligence

DIGITAL NOTES

ON

ARTIFICIAL INTELLIGENCE

[R20A0513]
B. TECH III YR - I SEM

(2023-24)

 PREPARED BY

 Dr.K.SURESH

 R.CHANDRA SHEKAR

 T.SHILPA

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‗A‘ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

Page 2 MRCET-Artificial Intelligence

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Department of Information Technology

III Year B.Tech. IT-I Sem LT/P/D C

3-/-/- 3

(R20A0513) ARTIFICIAL INTELLIGENCE

Course Objectives:

1. To train the students to understand different types of AI agents.

2. To understand various AI search algorithms.

3. Fundamentals of knowledge representation, building of simple knowledge-basedsystems and to apply

knowledge representation.

4. Fundamentals of reasoning

5. Study of Markov Models enables the student ready to step into applied AI.

UNIT - I

Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving Agents Basic

Search Strategies: Problem Spaces, Uninformed Search (Breadth First, Depth- First Search,Depth-first

with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*), Constraint Satisfaction

(Backtracking, Local Search)

UNIT - II

Advanced Search: Constructing Search Trees, Stochastic Search, AO* Search Implementation, Minimax

Search, Alpha-Beta Pruning.

Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic, Forward

Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem

UNIT - III

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues, Non-

monotonic Reasoning, Other Knowledge Representation Schemes.

Reasoning Under Uncertainty: Basic probability, Acting Under Uncertainty, Bayes‘ Rule, Representing

Knowledge in an Uncertain Domain, Bayesian Networks

UNIT - IV

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem Solving,

Page 3 MRCET-Artificial Intelligence

Learning from Examples - Winston‘s Learning Program, Decision Trees.

UNIT - V

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge

Acquisition.

TEXT BOOK:

1. Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition, Prentice-

Hall, 2010

REFERENCE BOOKS:

1. Artificial Intelligence, Elaine Rich, Kevin Knight, Shivasankar B. Nair, The McGrawHill
publications, Third Edition, 2009.

2. George F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, Pearson Education, 6th ed., 2009.

COURSE OUTCOMES:

1. Understand the informed and uninformed problem types and apply search strategies to solve them.

2. Apply difficult real problems in a state space representation to solve those using AI techniqueslike

searching and game playing.

3. Design and evaluate intelligent expert models for perception and prediction for intelligent environment.

4. Formulate valid solutions for problems involving uncertain inputs or outcomes by using decision

makingtechniques.

5. Demonstrate and enrich knowledge to select and apply AI tools to synthesize information and develop

models within constraints of application area.

Page 4 MRCET-Artificial Intelligence

INDEX

S.NO Title Page No

1 UNIT-I: Introduction to AI 5

2 Uninformed Search Strategies 25

3 Heuristic Search 34

4 Constraint Satisfaction 44

5 UNIT-II: Mini Max 48

6 Alpha–Beta Pruning 53

7 AO* Search 60

8 Syntax and Semantics of First-Order Logic 66

9 Forward Chaining and Backward Chaining 77

10 Probabilistic Reasoning 84

11 Bayes Theorem 85

12 UNIT-III: Knowledge Representation Issues 87

13 Acting Under Uncertainty 89

14 Bayes’ Rule 93

15 Bayesian Networks 95

16 UNIT-IV: Forms of Learning 100

17 Winston‘s Learning Program 107

18 Decision Trees 110

19 UNIT-V: Representing and Using Domain Knowledge 111

20 Shell 112

21 Knowledge Acquisition 114

Page 5 MRCET-Artificial Intelligence

UNIT- I

Introduction:

 Artificial Intelligence is concerned with the design of intelligence in an artificial device.

The term was coined by John McCarthy in 1956.

 Intelligence is the ability to acquire, understand and apply knowledge to achieve goalsin

the world.

 AI is the study of the mental faculties through the use of computational models.

 AI is the study of intellectual/mental processes as computational processes.

 AI program will demonstrate a high level of intelligence to a degree that equals or

exceeds the intelligence required of a human in performing some tasks.

 AI is unique, sharing borders with Mathematics, Computer Science,

Philosophy, Psychology, Biology, Cognitive Science and many others.

 Although there is no clear definition of AI or even Intelligence, it can be described as an

attempt to build machines that like humans can think and act, able to learn and use

knowledge to solve problems on their own.

Sub Areas of AI:

1) Game Playing

Deep Blue Chess program beat world champion Gary Kasparov

2) Speech Recognition

PEGASUS spoken language interface to American Airlines' EAASY SABRE reservation

system, which allows users to obtain flight information and make reservations over the

Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving

Agents Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth First, Depth-

First Search, Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-

First, A*), Constraint Satisfaction (Backtracking, Local Search)

Page 6 MRCET-Artificial Intelligence

telephone. The 1990s has seen significant advances in speech recognition so that limited

systems are now successful.

3) Computer Vision

Face recognition programs in use by banks, government, etc. The ALVINN system from

CMU autonomously drove a van from Washington, D.C. to San Diego (all but 52 of 2,849

miles), averaging 63 mph day and night, and in all weather conditions. Handwriting

recognition, electronics and manufacturing inspection, photo interpretation, baggage

inspection, reverse engineering to automatically construct a 3D geometric model.

4) Expert Systems

Application-specific systems that rely on obtaining the knowledge of human experts in an

area and programming that knowledge into a system.

a. Diagnostic Systems: MYCIN system for diagnosing bacterial infections of the

blood and suggesting treatments. Intellipath pathology diagnosis system (AMA

approved). Pathfinder medical diagnosis system, which suggests tests and makes

diagnoses. Whirlpool customer assistance center.

b. System Configuration

DEC's XCON system for custom hardware configuration. Radiotherapy treatment planning.

c. Financial Decision Making

Credit card companies, mortgage companies, banks, and the U.S. government

employ AI systems to detect fraud and expedite financial transactions. For

example, AMEX credit check.

d. Classification Systems

Put information into one of a fixed set of categories using several sources of

information. E.g., financial decision-making systems. NASA developed a system for

classifying very faint areas in astronomical images into either stars or galaxies with

very high accuracy by learning from human experts' classifications.

5) Mathematical Theorem Proving

Use inference methods to prove new theorems.

6) Natural Language Understanding

AltaVista's translation of web pages. Translation of Caterpillar Truck manuals into 20 languages.

http://babelfish.altavista.digital.com/cgi-bin/translate

Page 7 MRCET-Artificial Intelligence

7) Scheduling and Planning

Automatic scheduling for manufacturing. DARPA's DART system is used in Desert Storm and

Desert Shield operations to plan logistics of people and supplies. American Airlines rerouting

contingency planner. European space agency planning and scheduling of spacecraft assembly,

integration and verification.

8) Artificial Neural Networks:

9) Machine Learning

Applications of AI:

AI algorithms have attracted close attention of researchers and have also been applied successfully

to solve problems in engineering. Nevertheless, for large and complex problems, AI algorithms

consume considerable computation time due to stochastic feature of the search approaches.

1. Business; financial strategies

2. Engineering: check design, offer suggestions to create new product, expert systems for all

engineering problems

3. Manufacturing: assembly, inspection and maintenance

4. Medicine: monitoring, diagnosing

5. Education: in teaching

6. Fraud detection

7. Object identification

8. Information retrieval

9. Space shuttle scheduling

Building AI Systems:

1) Perception

Intelligent biological systems are physically embodied in the world and experience the

world through their sensors (senses). For an autonomous vehicle, input might be images

from a camera and range information from a rangefinder. For a medical diagnosis system,

perception is the set of symptoms and test results that have been obtained and input to the

system manually.

Page 8 MRCET-Artificial Intelligence

2) Reasoning

Inference, decision-making, classification from what is sensed and what the internal "model" is of

the world. Might be a neural network, logical deduction system, Hidden Markov Model induction,

heuristic searching a problem space, Bayes Network inference, genetic algorithms, etc.

Includes areas of knowledge representation, problem solving, decision theory, planning, game

theory, machine learning, uncertainty reasoning, etc.

3) Action

Biological systems interact within their environment by actuation, speech, etc. All behavior iscentered

around actions in the world. Examples include controlling the steering of a Mars rover or autonomous

vehicle, or suggesting tests and making diagnoses for a medical diagnosis system. Includes areas of

robot actuation, natural language generation, and speech synthesis.

The definitions of AI:

a) "The exciting new effort to make computers

think . . . machines with minds,in the full

and literal sense" (Haugeland, 1985)

"The automation of] activities that we

associate with human thinking, activities

such as decision-making, problem solving,

learning..."(Bellman, 1978)

b) "The study of mental faculties

through the use of computational

models" (Charniak and McDermott,

1985)

"The study of the computations that

make it possible to perceive, reason,

and act" (Winston, 1992)

c) "The art of creating machines that perform

functions that require intelligence when

performed by people" (Kurzweil, 1990)

"The study of how to make computers

do things at which, at the moment,

people are better" (Rich and Knight, 1

99 1)

d) "A field of study that seeks to explain

and emulate intelligent behavior in

terms of computational processes"

(Schalkoff, 1 990)

"The branch of computer science

that is concerned with the

automation of intelligent behavior"

(Luger and Stubblefield, 1993)

Page 9 MRCET-Artificial Intelligence

The definitions on the top, (a) and (b) are concerned with reasoning, whereas those on the

bottom, (c) and (d) address behavior. The definitions on the left, (a) and (c) measure success in

terms of human performance, and those on the right, (b) and (d) measure the ideal concept of

intelligence called rationality.

Intelligent Systems:

In order to design intelligent systems, it is important to categorize them into four categories

(Luger and Stubberfield 1993), (Russell and Norvig, 2003)

1. Systems that think like humans

2. Systems that think rationally

3. Systems that behave like humans

4. Systems that behave rationally

 Human-

Like
Rationall
y

Think:

Cognitive Science Approach

“Machines that think like humans”

Laws of thought Approach

“ Machines that think Rationally”

Act:

Turing Test Approach

“Machines that behave like humans”

Rational Agent Approach

“Machines that behave Rationally”

Cognitive Science: Think Human-Like

a. Requires a model for human cognition. Precise enough models allow

simulation by computers.

b. Focus is not just on behavior and I/O, but looks like reasoning process.

c. Goal is not just to produce human-like behavior but to produce a sequence of steps of the

reasoning process, similar to the steps followed by a human in solving the same task.

Laws of thought: Think Rationally

a. The study of mental faculties through the use of computational models; that is, the

study of computations that make it possible to perceive reason and act.

Page 10 MRCET-Artificial Intelligence

b. Focus is on inference mechanisms that are probably correct and guarantee an optimal solution.

c. Goal is to formalize the reasoning process as a system of logical rules and procedures of

inference.

d. Develop systems of representation to allow inferences to be like

―Socrates is a man. All men are mortal. Therefore, Socrates is mortal”

Turing Test: Act Human-Like

a. The art of creating machines that perform functions requiring intelligence when performed

by people; that it is the study of, how to make computers do things which, now, people do

better.

b. Focus is on action, and not intelligent behavior centered around the representation of the world.

c. Example: Turing Test

o 3 rooms contain: a person, a computer and an interrogator.

o The interrogator can communicate with the other 2 by teletype (to avoid
the machine imitate the appearance of voice of the person)

o The interrogator tries to determine which the person is and which the

machine is.

o The machine tries to fool the interrogator to believe that it is the human,

and the person also tries to convince the interrogator that it is the human.

o If the machine succeeds in fooling the interrogator, then conclude that the

machine is intelligent.

Rational agent: Act Rationally

a. Tries to explain and emulate intelligent behavior in terms of computational process; that

it is concerned with the automation of the intelligence.

b. Focus is on systems that act sufficiently if not optimally in all situations.

c. Goal is to develop systems that are rational and sufficient.

Page 11 MRCET-Artificial Intelligence

Agents and Environments:

Fig 2.1: Agents and Environments

Agent:

An Agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through actuators.

 A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth,

and other body parts for actuators.

 A robotic agent might have cameras and infrared range finders for sensors and

various motors for actuators.

 A software agent receives keystrokes, file contents, and network packets as sensory

inputs and acts on the environment by displaying on the screen, writing files, and

sending network packets.

Percept:

We use the term percept to refer to the agent's perceptual inputs at any given instant.

Percept Sequence:

An agent's percept sequence is the complete history of everything the agent has ever perceived.

Agent function:

Mathematically speaking, we say that an agent's behavior is described by the agent function

that maps any given percept sequence to an action.

Agent program

Internally, the agent function for an artificial agent will be implemented by an agent program.

It is important to keep these two ideas distinct. The agent function is an abstract

Page 12 MRCET-Artificial Intelligence

mathematical description: the agent program is a concrete implementation, running on the

agent architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world shown in

Fig 2.1.5. This world has just two locations: squares A and B. The vacuum agent perceives

which square it is in and whether there is dirt in the square. It can choose to move left, move

right, suck up the dirt, or do nothing. One very simple agent function is the following: if the

current square is dirty, then suck, otherwise move to the other square. A partial tabulation of this

agent function is shown in Fig 2.1.6.

Fig 2.1.5: A vacuum-cleaner world with just two locations.

Agent function

 Percept Sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

…

Page 13 MRCET-Artificial Intelligence

Fig 2.1.6: Partial tabulation of a simple agent function for the example: vacuum-cleaner world shown in the Fig

2.1.5

Fig 2.1.6(i): The REFLEX-VACCUM-AGENT program is invoked for each new percept

(location, status) and returns an action each time.

 A Rational agent is one that does the right thing. We say that the right action is the one that will

cause the agent to be most successful. That leaves us with the problem of deciding how and when

to evaluate the agent's success.

We use the term performance measure for the how—the criteria that determine how successful

an agent is.

 Ex-Agent cleaning the dirty floor.

 Performance Measure-Amount of dirt collected.

 When to measure-Weekly for better results

What is rational at any given time depends on four things:

 The performance measure defines the criterion of success.

 The agent ‘s prior knowledge of the environment

 The actions that the agent can perform.

 The agent ‘s percept sequence up to now.

Omniscience, L e a r n i n g and Autonomy:

 We need to distinguish between rationality and omniscience. An Omniscient agent knows the

actual outcome of its actions and can act accordingly but omniscience is impossible.

 Rational agent not only gathers information but also learns as much as possible from what it

perceives.

 If an agent just relies on the prior knowledge of its designer rather than its own percepts,

thenthe agent lacks autonomy.

 A system is autonomous to the extent that its behavior is determined by its own experience.

 A rational agent should be autonomous.

Function REFLEX-VACCUM-AGENT ([location, status]) returns an

action If status=Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Page 14 MRCET-Artificial Intelligence

E.g., a clock (lacks autonomy)

 No input (percepts)

 Run only but its own algorithm (prior knowledge)

 No learning, no experience, etc.

ENVIRONMENTS:

The Performance measure, the environment and the agents’ actuators and sensors come under the

heading task environment. We also call this as PEAS(Performance, Environment,Actuators,Sensors)

Page 15 MRCET-Artificial Intelligence

Environment-Types:

1. Accessible vs. inaccessible or fully observable vs Partially Observable:

If an agent sensor can sense or access the complete state of an environment at each point of time

then it is a fully observable environment, else it is partially observable.

2. Deterministic vs. Stochastic:

If the next state of the environment is completely determined by the current state and the actions

selected by the agents, then we say the environment is deterministic.

3. Episodic vs. non episodic:

 The agent's experience is divided into "episodes." Each episode consists of the agent perceiving

and then acting. The quality of its action depends just on the episode itself, because subsequent

episodes do not depend on what actions occur in previous episodes.

 Episodic environments are much simpler because the agent does not need to think ahead.

4. Static vs. dynamic.

If the environment can change while an agent is deliberating, then we say the environment is

dynamic for that agent; otherwise, it is static.

5. Discrete vs. continuous:

If there are a limited number of distinct, clearly defined percepts and actions we say

that the environment is discrete. Otherwise, it is continuous.

Page 16 MRCET-Artificial Intelligence

STRUCTURE OF INTELLIGENT AGENTS

 The job of AI is to design the agent program: a function that implements the agent mapping

from percepts to actions. We assume this program will run on some sort of ARCHITECTURE

computing device, which we will call architecture.

 The architecture might be a plain computer, or it might include special-purpose hardware for

certain tasks, such as processing camera images or filtering audio input. It might also include

software that provides a degree of insulation between the raw computer and the agent program,

so that we can program at a higher level. In general, the architecture makes the percepts from

the sensors available to the program, runs the program, and feeds the program's action choices

to the effectors as they are generated.

 The relationship among agents, architectures, and programs can be summed up as follows:

agent = architecture + program

Agent programs:

 Intelligent agents accept percepts from an environment and generate actions. The early

versions of agent programs will have a very simple form (Figure 2.4)

Page 17 MRCET-Artificial Intelligence

 Each will use some internal data structures that will be updated as new percepts arrive.

 These data structures are operated on by the agent's decision-making procedures to generate an

action choice, which is then passed to the architecture to be executed.

Types of agents:

Agents can be grouped into four classes based on their degree of perceived intelligence and capability:

 Simple Reflex Agents

 Model-Based Reflex Agents

 Goal-Based Agents

 Utility-Based Agents

Simple reflex agents:

 Simple reflex agents ignore the rest of the percept history and act only based on the

current percept.

 The agent function is based on the condition-action rule.

 If the condition is true, then the action is taken, else not. This agent function only succeeds when

the environment is fully observable.

Model-based reflex agents:

Page 18 MRCET-Artificial Intelligence

 The Model-based agent can work in a partially observable environment and track the situation.

 A model-based agent has two important factors:

 Model: It is knowledge about "how things happen in the world," so it is called a Model-based agent.

 Internal State: It is a representation of the current state based on percept history.

Goal-based agents:

 A goal-based agent has an agenda.

 It operates based on a goal in front of it and makes decisions based on how best to reach that goal.

 A goal-based agent operates as a search and planning function, meaning it targets the goal ahead and

finds the right action to reach it.

 Expansion of model-based agent.

Utility-based agents:

Page 19 MRCET-Artificial Intelligence

 A utility-based agent is an agent that acts based not only on what the goal is, but the best way to reach that

goal.

 The Utility-based agent is useful when there are multiple possible alternatives, and an agent must

choose in order to perform the best action.

 The term utility can be used to describe how "happy" the agent is.

Problem Solving Agents:

 Problem solving agent is a goal-based agent.

 Problem solving agents decide what to do by finding sequence of actions that lead to desirable states.

Goal Formulation:

It organizes the steps required to formulate/ prepare one goal out of multiple goals available.

Problem Formulation:

It is a process of deciding what actions and states to consider following goal formulation.

The process of looking for the best sequence to achieve a goal is called Search.

A search algorithm takes a problem as input and returns a solution in the form of action sequences.

Once the solution is found the action it recommends can be carried out. This is called Execution phase.

Well Defined problems and solutions:

A problem can be defined formally by 4 components:

 The initial state of the agent is the state where the agent starts in. In this case, the initial state can be

Page 20 MRCET-Artificial Intelligence

described as in: Arad.

 The possible actions available to the agent correspond to each of the state the agent residesin.

For example, ACTIONS (In: Arad) = {Go: Sibiu, Go: Timisoara, Go: Zerind}.

Actions are also known as operations.

 A description of what each action does. The formal name for this is Transition model, Specified by

thefunction Result(s,a) that returns the state that results from the action a in states.

We also use the term Successor to refer to any state reachable from a given state by a single action.

For EX: Result(In(Arad),GO(Zerind))=In(Zerind)

Together the initial state, actions and transition model implicitly defines the state space of the problem

State space: set of all states reachable from the initial state by any sequence of actions.

 The goal test, determining whether the current state is a goal state. Here, the goal state is {In:

Bucharest}

 The path cost function, which determines the cost of each path, is reflecting in the

performance measure.

we define the cost function as c(s, a, s‘), where s is the current state and a is the action performed by the

agent to reach state’s‘.

Page 21 MRCET-Artificial Intelligence

Example –

8 puzzle problem

Initial State

Goal State

 States: a state description specifies the location of each of the eight tiles in one of the nine

squares. For efficiency, it is useful to include the location of the blank.

 Actions: blank moves left, right, up, or down.

 Transition Model: Given a state and action, this returns the resulting state. For example, if

weapply left to the start state the resulting state has the 5 and the blank switched.

 Goal test: state matches the goal configuration shown in fig.

 Path cost: each step costs 1, so the path cost is just the length of the path.

Page 22 MRCET-Artificial Intelligence

State Space Search/Problem Space Search:

The state space representation forms the basis of most of the AI methods.

 Formulate a problem as a state space search by showing the legal problem states, the legal

operators, and the initial and goal states.

 A state is defined by the specification of the values of all attributes of interest in the world.

 An operator changes one state into the other; it has a precondition which is the value of

certain attributes prior to the application of the operator, and a set of effects, which arethe

attributes altered by the operator.

 The initial state is where you start.

 The goal state is the partial description of the solution.

Formal Description of the problem:

1. Define a state space that contains all the possible configurations of the relevant objects.

2. Specify one or more states within that space that describe possible situations from which

the problem-solving process may start (initial state)

3. Specify one or more states that would be acceptable as solutions to the problem. (Goal states)

Specify a set of rules that describe the actions (operations) available.

State-Space Problem Formulation:

Example: A problem is defined by four items:

1. initial state e.g., "at Arad―

2. actions or successor function: S(x) = set of action–state pairs

e.g., S(Arad) = {<Arad → Zerind, Zerind>, … }

3. goal test (or set of goal states)

e.g., x = "at Bucharest‖, Checkmate(x)

4. path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state.

Page 23 MRCET-Artificial Intelligence

Example: 8-queens problem

1. Initial State: Any arrangement of 0 to 8 queens on board.

2. Operators: add a queen to any square.

3. Goal Test: 8 queens on board, none attacked.

4. Path cost: not applicable or Zero (because only the final state counts, search cost might

be of interest).

Search strategies:

Search: Searching is a step-by-step procedure to solve a search-problem in a given search space. A

search problem can have three main factors:

Search Space: Search space represents a set of possible solutions, which a system may have.

Start State: It is a state from where the agent begins the search.

Goal test: It is a function which observes the current state and returns whether the goal state is

achievedor not.

Page 24 MRCET-Artificial Intelligence

Properties of Search Algorithms

Which search algorithm one should use will generally depend on the problem

domain. There are four important factors to consider:

1. Completeness – Is a solution guaranteed to be found if at least one solution exists.

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost) solution if there

exists more than one solution?

3. Time Complexity – The upper bound on the time required to find a solution, as a function of

the complexity of the problem.

4. Space Complexity – The upper bound on the storage space (memory) required at any point

during the search, as a function of the complexity of the problem.

State Spaces versus Search Trees:

 State Space

o Set of valid states for a problem

o Linked by operators.

o e.g., 20 valid states (cities) in the Romanian travel problem

 Search Tree

– Root node = initial state

– Child nodes = states that can be visited from parent

– Note that the depth of the tree can be infinite.

• E.g., via repeated states

– Partial search tree

• Portion of tree that has been expanded so far.

– Fringe

• Leaves of partial search tree, candidates for

expansion Search trees = data structure to search state-space

Searching
Many traditional search algorithms are used in AI applications. For complex problems, the traditional

algorithms are unable to find the solution within some practical time and space limits. Consequently,

many special techniques are developed, using heuristic functions. The algorithms that use heuristic

functions are called heuristic algorithms. Heuristic algorithms are not intelligent; they appear to be

intelligent because they achieve better performance.

Page 25 MRCET-Artificial Intelligence

Heuristic algorithms are more efficient because they take advantage of feedback from the data to direct

the search path.

Uninformed search

Also called blind, exhaustive, or brute-force search, uses no information about the problem to guide the

search and therefore may not be very efficient.

Informed Search:

Also called heuristic or intelligent search, uses information about the problem to guide the search, usually

guesses the distance to a goal state and therefore efficient, but the search may not be always possible.

Uninformed Search (Blind searches):

1. Breadth First Search:

 One simple search strategy is a breadth-first search. In this strategy, the root node is

expanded first, then all the nodes generated by the root node are expanded next, and then

their successors, and so on.

 In general, all the nodes at depth d in the search tree are expanded before the nodes at depth d+ 1.

BFS illustrated:

Step 1: Initially frontier contains only one node corresponding to the source state A.

Page 26 MRCET-Artificial Intelligence

Figure 1

Frontier: A

Step 2: A is removed from fringe. The node is expanded, and its children B and C are generated.

They are placed at the back of fringe.

Figure 2

Frontier: B C

Step 3: Node B is removed from fringe and is expanded. Its children D, E are generated and put

at the back of fringe.

Figure 3

Frontier: C D E

Step 4: Node C is removed from fringe and is expanded. Its children D and G are added to the

back of fringe.

Page 27 MRCET-Artificial Intelligence

Figure 4

Frontier: D E D G

Step 5: Node D is removed from fringe. Its children C and F are generated and added to the back

of fringe.

Figure 5

Frontier: E D G C F

Step 6: Node E is removed from fringe. It has no children.

Figure 6

Frontier: D G C F

Step 7: D is expanded; B and F are put in OPEN.

Figure 7

Page 28 MRCET-Artificial Intelligence

Frontier: G C F B F

Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm returns path

A C G by following the parent pointers of the node corresponding to G. The algorithm

terminates.

Breadth first search is:

Advantages:

 One of the simplest search strategies

 Complete. If there is a solution, BFS is guaranteed to find it.

 If there are multiple solutions, then a minimal solution will be found.

 The algorithm is optimal (i.e., admissible) if all operators have the same cost.

Otherwise, breadth first search finds a solution with the shortest path length.

 Time complexity : O(bd)

 Space complexity : O(bd)

 Optimality : Yes

b - branching factor (maximum no of successors of

anynode), d – Depth of the shallowest goal node

Maximum length of any path (m) in search space

 BFS will provide a solution if any solution exists.

 If there is more than one solutions for a given problem, then BFS will provide the minimal solution

which requires the least number of steps.

Disadvantages:

 Requires the generation and storage of a tree whose size is exponential the depth of the

shallowest goal node.

 The breadth first search algorithm cannot be effectively used unless the search space is

quite small.

Applications Of Breadth-First Search Algorithm

GPS Navigation systems: Breadth-First Search is one of the best algorithms used to find neighboring

locations by using the GPS system.

Broadcasting: Networking makes use of what we call packets for communication. These packetsfollow a

traversal method to reach various networking nodes. One of the most used traversals

Page 29 MRCET-Artificial Intelligence

methods is Breadth-First Search. It is being used as an algorithm that is used to communicate broadcasted

packets across all the nodes in a network.

Depth- First- Search.

We may sometimes search for the goal along the largest depth of the tree and move up only

when further traversal along the depth is not possible. We then attempted to find alternative

offspring of the parent of the node (state) last visited. If we visit the nodes of a tree using the

above principles to search the goal, the traversal made is called depth first traversal and

consequently the search strategy is called depth first search.

DFS illustrated:

A State Space Graph

Step 1: Initially fringe contains only the node for A.

Figure 1

Page 30 MRCET-Artificial Intelligence

FRINGE: A

Step 2: A is removed from fringe. A is expanded and its children B and C are put in front of

fringe.

Figure 2

FRINGE: B C

Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe.

Figure 3

FRINGE: D E C

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe.

Figure 4

FRINGE: C F E C

Step 5: Node C is removed from fringe. Its child G is pushed in front of the fringe.

Figure 5

Page 31 MRCET-Artificial Intelligence

Figure 5

FRINGE: G F E C

Step 6: Node G is expanded and found to be a goal node.

Figure 6

FRINGE: G F E C

The solution path A-B-D-C-G is returned, and the algorithm terminates.

Depth first search

1. takes exponential time.

2. If N is the maximum depth of a node in the search space, in the worst case the algorithm will.

d

take time O(b).

3. The space taken is linear in the depth of the search tree, O(bN).

Note that the time taken by the algorithm is related to the maximum depth of the search tree. If the search

tree has infinite depth, the algorithm may not terminate. This can happen if the search space is infinite. It

can also happen if the search space contains cycles. The latter case can be handled by checking for cycles

in the algorithm. Thus, Depth First Search is not complete.

Page 32 MRCET-Artificial Intelligence

Iterative Deeping DFS

 The iterative deepening algorithm is a combination of DFS and BFS algorithms.

 This search algorithm finds out the best depth limit and does it by gradually increasing the limit

until a goal is found.

 This algorithm performs depth-first search up to a certain "depth limit", and it keeps increasing

the depth limit after each iteration until the goal node is found.

Advantages:

 It combines the benefits of BFS and DFS search algorithm in terms of fast search and memory

efficiency.

Disadvantages:

 The main drawback of IDDFS is that it repeats all the work of the previous phase.

Iterative deepening search L=0

Iterative deepening search L=1

Iterative deepening search L=2

Iterative Deepening Search L=3

Page 33 MRCET-Artificial Intelligence

M is the goal node. So we stop there.

Complete: Yes

Time: O(bd)

Space: O(bd)

Optimal: Yes, if step cost = 1 or increasing function of depth.

Conclusion:

We can conclude that IDS is a hybrid search strategy between BFS and DFS inheriting

their advantages.

IDS is faster than BFS and DFS.

It is said that ―IDSisthepreferreduniformedsearchmethodwhen there is a large search space and the

depthof the solution is not known

Page 34 MRCET-Artificial Intelligence

Informed search/Heuristic search

A heuristic is a method that.

 might not always find the best solution but is guaranteed to find a good solution in

a reasonable time. By sacrificing completeness, it increases efficiency.

 Useful in solving tough problems which.

o could not be solved any other way.
o solutions take an infinite time or very long time to compute.

Calculating Heuristic Value:

 1. Euclidian distance- used to calculate straight line distance.
 2.Manhatten distance-If we want to calculate vertical or horizontal distance

for ex: 8 puzzle problem

Source state

1 3 2

6 5 4
 8 7

destination state

1 2 3

4 5 6

7 8

Then the Manhattan distance would be sum of the no of moves required to move each

number from source state to destination state.

Number in 8
puzzles

1 2 3 4 5 6 7 8

No. of moves

to reach
destination

0 2 1 2 0 2 2 0

3. No. of misplaced tiles for 8 puzzle problem

Page 35 MRCET-Artificial Intelligence

Source state

1 3 2

6 5 4
 8 7

Destination state

1 2 3

4 5 6

7 8

Here just calculate the number of tiles that have to be changed to reach goal state

Here 1,5,8 need not be changed.

2,3,4,6,7 should be changed, so the heuristic value will be 5(because 5 tiles must be changed)

Hill Climbing Algorithm

 Hill climbing algorithm is a local search algorithm which continuously moves in the

direction of increasing elevation/value to find the peak of the mountain or best solution to

the problem. It terminates when it reaches a peak value where no neighbor has a higher

value.

 It is also called greedy local search as it only looks to its good immediate neighbor state

and not beyond that.

 Hill Climbing is mostly used when a good heuristic is available.

 In this algorithm, we don't need to maintain and handle the search tree or graph as it only

keeps a single current state.

The idea behind hill climbing is as follows.

1. Pick a random point in the search space.

2. Consider all the neighbors of the current state.

3. Choose the neighbor with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighboring states are of lower quality.

5. Return the current state as the solution state.

Page 36 MRCET-Artificial Intelligence

Different regions in the state space landscape:

Local Maximum: Local maximum is a state which is better than its neighbor states, but there is also another state which is

higher than it.

Global Maximum: Global maximum is the best possible state of state space landscape. It has the highest value of objective

function.

Current state: It is a state in a landscape diagram where an agent is currently present.

Flat local maximum: It is a flat space in the landscape where all the neighboring states of current states have the same value.

Shoulder: It is a plateau region which has an uphill edge.

Algorithm for Hill Climbing

Problems in Hill Climbing Algorithm:

Page 37 MRCET-Artificial Intelligence

Simulated annealing search.

A hill-climbing algorithm that never makes ―downhill‖ moves towards states with lower value (or

higher cost) is guaranteed to be incomplete, because it can stuck on a local maximum. In contrast,

a purely random walk –that is, moving to a successor chosen uniformly at random from the set of

successors – is complete, but extremely inefficient. Simulated annealing is an

Page 38 MRCET-Artificial Intelligence

algorithm that combines hill-climbing with a random walk in some way that yields both efficiency

and completeness.

simulated annealing algorithm is quite like hill climbing. Instead of picking the best move,

however, it picks the random move. If the move improves the situation, it is always accepted.

Otherwise, the algorithm accepts the move with some probability less than 1. The

probability decreases exponentially with the ―badness‖ of the move – the amount E by which

the evaluation is worsened. The probability also decreases as the "temperature" T goes down: "bad moves

are more likely to be allowed at the start when temperature is high, and they become more unlikely as

T decreases. One can prove that if the schedule lowers T slowly enough, the algorithm will find a

global optimum with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problems. It has been applied widely

to factory scheduling and other large-scale optimization tasks.

Best First Search:

 A combination of depth first and breadth first searches.

 Depth first is good because a solution can be found without computing all nodes and

breadth first is good because it does not get trapped in dead ends.

 The best first search allows us to switch between paths thus gaining the benefit of both

approaches. At each step the most promising node is chosen. If one of the nodes chosen

generates nodes that are less promising it is possible to choose another at the same level

and in effect the search changes from depth to breadth. If on analysis these are no better

than this previously unexpanded node and branch is not forgotten, and the search method

reverts to the

OPEN is a priority queue of nodes that have been evaluated by the heuristic function, but which

have not yet been expanded into successors. The most promising nodes are at the front.

CLOSED are nodes that have already been generated and these nodes must be stored because a

graph is being used in preference to a tree.

Algorithm:

1. Start with OPEN holding the initial state.

Page 39 MRCET-Artificial Intelligence

2. Until a goal is found or there are no nodes left on open do.

 Pick the best node on OPEN.

 Generate its successors.

 For each successor Do

• If it has not been generated before, evaluate it, add it to OPEN

andrecord its parent

• If it has been generated before change the parent if this new path is better

and, in that case, update the cost of getting to any successor nodes.

3. If a goal is found or no more nodes left in OPEN, quit, else return to 2.

Example:

1. It is not optimal.

Page 40 MRCET-Artificial Intelligence

2. It is incomplete because it can start down an infinite path and never return to try other

possibilities.

3. The worst-case time complexity for greedy search is O (bm), where m is the maximum

depth of the search space.

4. Because greedy search retains all nodes in memory, its space complexity is the same as

its time complexity

A* Algorithm

The Best First algorithm is a simplified form of the A* algorithm.

The A* search algorithm (pronounced "Ay-star") is a tree search algorithm that finds a path from

a given initial node to a given goal node (or one passing a given goal test). It employs a "heuristic

estimate" which ranks each node by an estimate of the best route that goes through thatnode. It

visits the nodes in order of this heuristic estimate.

Similar to greedy best-first search but is more accurate because A* takes into account the nodes

that have already been traversed.

From A* we note that f = g + h where

g is a measure of the distance/cost to go from the initial node to the current node

h is an estimate of the distance/cost to solution from the current node.

Thus, f is an estimate of how long it takes to go from the initial node to the solution

Algorithm:

1. Initialize : Set OPEN = (S); CLOSED

= () g(s)= 0, f(s)=h(s)

2. Fail : If OPEN = (), Terminate and fail.

3. Select : select the minimum cost state, n, from OPEN,

save n in CLOSED

4. Terminate : If n €G, Terminate with success and return f(n)

5. Expand : for each successor, m, of n

http://www.fact-index.com/t/tr/tree_search_algorithm.html

Page 41 MRCET-Artificial Intelligence

a) If m € [OPEN U

CLOSED] Set g(m) =

g(n) + c(n , m) Set

f(m) = g(m) + h(m)

Insert m in OPEN

b) If m € [OPEN U CLOSED]

Set g(m) = min { g(m) , g(n) + c(n

, m)} Set f(m) = g(m) + h(m)

If f(m) has decreased and m € CLOSED

Move m to OPEN.

Description:

 A* begins at a selected node. Applied to this node is the "cost" of entering this node (usually

zero for the initial node). A* then estimates the distance to the goal node from the current

node. This estimate and the cost added together are the heuristic which is assigned to the

path leading to this node. The node is then added to a priority queue, often called "open".

 The algorithm then removes the next node from the priority queue (because of the way a

priority queue works, the node removed will have the lowest heuristic). If the queue is

empty, there is no path from the initial node to the goal node and the algorithm stops. If the

node is the goal node, A* constructs and outputs the successful path and stops.

 If the node is not the goal node, new nodes are created for all admissible adjoining nodes;

the exact way of doing this depends on the problem at hand. For each successive node, A*

calculates the "cost" of entering the node and saves it with the node. This cost is calculated

from the cumulative sum of costs stored with its ancestors, plus the cost of the operation

which reached this new node.

 The algorithm also maintains a 'closed' list of nodes whose adjoining nodes have been

checked. If a newly generated node is already in this list with an equal or lower cost, no

further processing is done on that node or with the path associated with it. If a node in the

closed list matches the new one, but has been stored with a higher cost, it is removed from

the closed list, and processing continues on the new node.

http://www.fact-index.com/n/no/node.html
http://www.fact-index.com/p/pr/priority_queue.html

Page 42 MRCET-Artificial Intelligence

 Next, an estimate of the new node's distance to the goal is added to the cost to form the heuristic

for that node. This is then added to the 'open' priority queue unless an identical node is found there.

 Once the above three steps have been repeated for each new adjoining node, the original node taken

from the priority queue is added to the 'closed' list. The next node is then popped from the priority

queue and the process is repeated The heuristic costs from each city to Bucharest:

Page 43 MRCET-Artificial Intelligence

Page 44 MRCET-Artificial Intelligence

A* search properties:

 The algorithm A* is admissible. This means that provided a solution exists, the first solution

found by A* is an optimal solution. A* is admissible under the following conditions:

 Heuristic function: for every node n , h(n) ≤ h*(n) .

 A* is also complete.

 A* is optimally efficient for a given heuristic.

 A* is much more efficient than uninformed search.

Constraint Satisfaction Problems

https://www.cnblogs.com/RDaneelOlivaw/p/8072603.html

Sometimes a problem is not embedded in a long set of action sequences but requires picking the best

option from available choices. A good general-purpose problem-solving technique is to list the

constraints of a situation (either negative constraints, like limitations, or positive elements that you

want in the final solution). Then pick the choice that satisfies most of the constraints.

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of variables,

X1;X2; : : :

;Xn, and a set of constraints, C1;C2; : : : ;Cm. Each variable Xi has nonempty domain Di of possible

values. Each constraint Ci involves some subset of variables and specifies the allowable

combinations of values for that subset. A state of the problem is defined by an assignment of

valuesto some or all of the variables, {Xi = vi;Xj =vj ; : : :} An assignment that does not violate any

constraints is called a consistent or

legal assignment. A complete assignment is one in which every variable is mentioned, and a solution

to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also require a solution

that maximizes an objective function.

CSP can be given an incremental formulation as a standard search problem as follows:

1. Initial state: the empty assignment fg, in which all variables are unassigned.

2. Successor function: a value can be assigned to any unassigned variable, if it doesnot conflict

with previously assigned variables.

3. Goal test: the current assignment is complete.

https://www.cnblogs.com/RDaneelOlivaw/p/8072603.html

Page 45 MRCET-Artificial Intelligence

4. Path cost: a constant cost for every step

Examples:

1. The best-known category of continuous-domain CSPs is that of

linear programming problems, where constraints must be linear

inequalities forming a convex region.

2. Crypt arithmetic puzzles.

Example: The map coloring problem.

The task of coloring each region red, green, or blue in such a way that no neighboring

regions have the same color.

We are given the task of coloring each region red, green, or blue in such a way that the

neighboring regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA, and

T. The domain of each variable is t h e s e t { red, green, b l u e }. The constraints require.

neighboring regions have distinct colors: for example, the allowable combinations for WA

and NT are the pairs {(red,

green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. (The constraint can also

berepresented as the inequality WA ≠NT). There are many possible solutions,

Page 46 MRCET-Artificial Intelligence

such as {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = red}. Map

of Australia showing each of its states and territories

Constraint Graph: A CSP is usually represented as an undirected graph, called constraint

graph where the nodes are the variables, and the edges are the binary constraint.

The map-coloring problem is represented as a

constraint graph. CSP can be viewed as a standard

search problemas follows:

> Initial state: the empty assignment {}, in which all variables are unassigned.

> Successor function: a value can be assigned to any unassigned variable if it does

not conflict with previously assigned variables.

> Goal test: the current assignment is complete.

> Path cost: a constant cost (E.g.,1) for every step.

Page 47 MRCET-Artificial Intelligence

UNIT II

Constructing Search Trees:

Game Playing

Adversarial search, or game-tree search, is a technique for analyzing an adversarial game in order to try to

determine who can win the game and what moves the players should make in order to win. Adversarial

search is one of the oldest topics in Artificial Intelligence. The original ideas for adversarial search were

developed by Shannon in 1950 and independently by Turing in 1951, in the context of the game of chess—

and their ideas still form the basis for the techniques used today.

2- Person Games:

o Players: We call them Max and Min.

o Initial State: Includes board position and whose turn it is.

Advanced Search: Constructing Search Trees, Stochastic Search, AO* Search Implementation, Minimax
Search, Alpha-Beta Pruning Basic Knowledge Representation and Reasoning: Propositional Logic, First-
Order Logic, Forward Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes
Theorem

Page 48 MRCET-Artificial Intelligence

o Operators: These correspond to legal moves.

o Terminal Test: A test applied to a board position which determines whether the game is

over. In chess, for example, this would be a checkmate or stalemate situation.

o Utility Function: A function which assigns a numeric value to a terminal state. For

example,in chess the outcome is win (+1), lose (-1) or draw (0). Note that by convention,

we alwaysmeasure utility relative to Max.

Mini Max Algorithm:

1. Generate the whole game tree.

2. Apply the utility function to leaf nodes to get their values.

3. Use the utility of nodes at level n to derive the utility of nodes at level n-1.

4. Continue backing up values towards the root (one layer at a time).

5. Eventually the backed-up values reach the top of the tree, at which point Max chooses the move

that yields the highest value. This is called the minimax decision because it maximizes the utility

for Max on the assumption that Min will play perfectly to minimize it.

Page 49 MRCET-Artificial Intelligence

Example:

Example:

Page 50 MRCET-Artificial Intelligence

Page 51 MRCET-Artificial Intelligence

Page 52 MRCET-Artificial Intelligence

Properties of minimax:

 Complete : Yes (if tree is finite)

 Optimal : Yes (against an optimal opponent)

 Time complexity : O(bm)

 Space complexity : O(bm) (depth-first exploration)

 For chess, b ≈ 35, m ≈100 for "reasonable" games

→ exact solution comple te ly infeasible.

Page 53 MRCET-Artificial Intelligence

Limitations

– Not always feasible to traverse entire tree

– Time limitations

Alpha-Beta pruning algorithm:

• Pruning: eliminating a branch of the search tree from consideration without exhaustive

examination of each node

• - Pruning: the basic idea is to prune portions of the search tree that cannot improve

theutility value of the max or min node, by just considering the values of nodes seen so

far.

• Alpha-beta pruning is used on top of minimax search to detect paths that do not need to

be explored. The intuition is:

• The MAX player is always trying to maximize the score. Call this .

• The MIN player is always trying to minimize the score. Call this .

• Alpha cutoff: Given a Max node n, cutoff the search below n (i.e., don't generate or

examine any more of n's children) if alpha(n) >= beta(n)

(Alpha increases and passes beta from below)

• Beta cutoff.: Given a Min node n, cutoff the search below n (i.e., don't generate or

examine any more of n's children) if beta(n) <= alpha(n)

(Beta decreases and passes alpha from above)

• Carry alpha and beta values down during search Pruning occurs whenever alpha >= beta

Algorithm:

Page 54 MRCET-Artificial Intelligence

Example:

1) Setup phase: Assign to each left-most (or right-most) internal node of the tree,

variables: alpha = -infinity, beta = +infinity

2) Look at first computed final configuration value. It’s a 3. Parent is a min node, so

set the beta (min) value to 3.

Page 55 MRCET-Artificial Intelligence

3) Look at next value, 5. Since parent is a min node, we want the minimum of 3 and

5 which is 3. Parent min node is done – fill alpha (max) value of its parent max node. Always set

alpha for max nodes and beta for min nodes. Copy the state of the max parent node into the second

unevaluated min child.

4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b.

Page 56 MRCET-Artificial Intelligence

5) Now, the min parent node has a max value of 3 and min value of 2. The value of the 2nd child

does not matter. If it is >2, 2 will be selected for min node. If it is <2, it will be selected for min

node, but since it is <3 it will not get selected for the parent max node. Thus, we prune the right

subtree of the min node. Propagate max value up the tree.

6) Max node is now done and we can set the beta value of its parent and propagate node

state to sibling subtree’s left-most path.

Page 57 MRCET-Artificial Intelligence

7) The next node is 10. 10 is not smaller than 3, so the state of parent does not change. We

still mustlook at the 2nd child since alpha is still –inf.

8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so the

parent max node gets the alpha (max) value from the child. Note that if the max node had a

2nd subtree, we can prune it since a>b.

Page 58 MRCET-Artificial Intelligence

9) Continue propagating value up the tree, modifying the corresponding alpha/beta values.

Also propagate the state of root node down the left-most path of the right subtree.

10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other

children exist, we propagate the value up the tree.

Page 59 MRCET-Artificial Intelligence

11) We have a value for the 3rd level max node, now we can modify the beta (min) value of

the min parent to 2. Now, we have a situation that a>b and thus the value of the rightmost

subtree of the min node does not matter, so we prune the whole subtree.

12) Finally, no more nodes remain, we propagate values up the tree. The root has a value

of 3 that comes from the left-most child. Thus, the player should choose the left-most

child’s move to maximize his/her winnings. As you can see, the result is the same as with

the mini-max example, but we did not visit all nodes of the tree.

Page 60 MRCET-Artificial Intelligence

AO* Search: (And-Or) Graph:

 AO* is an informed search algorithm, work based on heuristic. We already know about the divide and

conquer strategy, a solution to a problem can be obtained by decomposing it into smaller sub-problems.

 Each of this sub-problem can then be solved to get its sub solution. These sub solutions can then

recombine to get a solution. That is called Problem Reduction. AND-OR graphs or AND – OR trees

are used for representing the solution.

 This method generates arcs which is called as AND-OR arcs. One AND arc may point to any number

of successor nodes, all of which must be solved for an arc to point to a solution. AND-OR graph is

used to represent various kinds of complex problem solutions.

 AO* search algo. is based on AND-OR graph so, it is called AO* search algo.

 Example: In Following figure, we have taken example of Goal: Acquire TV Set. This goal or problem is

subdivided into two subproblems or sub goals like 1) STEAL TV SET 2) Earn some money, Buy TV SET.

SO, to solve this problem if we select second alternative of earn some Money, then along with that Buy TV

SET also need to select as it is part of and graph.

 Whereas First alternative: Steal Tv Set is forming OR Graph

AO * Search Algorithm In Artificial Intelligence

 Just as in an OR graph, several arcs may emerge from a single node, indicating a variety of ways in which the

original problem might be solved.

 This is why the structure is called not simply an OR-graph but rather an AND-OR graph (which also happens to be

an AND-OR tree)

AO * Search Algorithm In Artificial Intelligence With Example

Page 61 MRCET-Artificial Intelligence

AO * Search Algorithm In Artificial Intelligence

 An algorithm to find a solution in an AND – OR graph must handle AND area appropriately.

 The A* algorithm cannot search AND – OR graphs efficiently.

 This can be understood from the given figure.

 In figure (a) the top node A has been expanded producing two area one leading to B and leading to C-D

. the numbers at each node represent the value of f ‗ at that node (cost of getting to the goal state from

current state). For simplicity, it is assumed that every operation (i.e., applying a rule) has a unit cost, i.e.,

eacharea with single successor will have a cost of 1 and each of its components.

 With the available information till now, it appears that C is the most promising node to expand since itsf

‗ = 3, the lowest but going through B would be better since to use C we must also use D ‘and the cost

would be 9(3+4+1+1). Through B it would be 6(5+1).

 Thus, the choice of the next node to expand depends not only on a value but also on whether that node is

part of the current best path form the initial mode. Figure (b) makes this clearer. In figure the node G

appears to be the most promising node, with the least f ‗ value. But G is not on the current beat path,

since to use G, we must use GH with a cost of 9 and again this demands that arcs be used (with a cost of

27).

The path from A through B, E-F is better with a total cost of (17+1=18). Thus, we can see that to

search an AND-OR graph, the following three things must be done.

1. traverse the graph starting at the initial node and following the current best path and accumulate the setof

nodes that are on the path and have not yet been expanded.

2. Pick one of these best unexpanded nodes and expand it. Add its successors to the graph and compute f ‗

(cost of the remaining distance) for each of them.

3. Change the f ‗ estimate of the newly expanded node to reflect the new information produced by its

successors. Propagate this change backward through the graph. Decide which of the current best

path.

The propagation of revised cost estimation backward is in the tree is not necessary in A* algorithm.

This is because in AO* algorithm expanded nodes are re-examined so that the current best path can

be selected.

Advantages of AO*:

 It is Complete

 Will not go in infinite loop.

 Less Memory Required

Page 62 MRCET-Artificial Intelligence

Disadvantages of AO*:

It is not optimal as it does not explore all the path once it find a solution.

BASIC KNOWLEDGE REPRESENTATION AND REASONING:

• Humans are best at understanding, reasoning, and interpreting knowledge. Human knows things,

which is knowledge and as per their knowledge they perform various actions in the real world.

• But how machines do all these things comes under knowledge representation.

• There are three factors which are put into the machine, which makes it valuable:

• Knowledge: Information related to the environment is stored in the machine.

• Reasoning: The ability of the machine to understand stored knowledge.

• Intelligence: The ability of the machine to make decisions based on the stored information.

• A knowledge representation language is defined by two aspects:

• The syntax of a language describes the possible configurations that can constitute sentences.

• The semantics determines the facts in the world to which the sentences refer.

• For example, the syntax of the language of arithmetic expressions says that if x and y are

expressions denoting numbers, then x > y is a sentence about numbers. The semantics of the language

says that x > y is false when y is a bigger number than x, and true otherwise from the syntax and

semantics, we can derive an inference mechanism for an agent that uses the language.

• Recall that the semantics of the language determine the fact to which a given sentence refers.

Facts are part of the world,

• whereas their representations must be encoded in some way that can be physically stored within an

agent. We cannot put the world inside a computer (nor can we put it inside a human), so all

reasoning mechanisms must operate on representations of facts, rather than on the facts themselves.

Because sentences are physical configurations of parts of the agent,

Reasoning must be a process of constructing new physical configurations from old ones. Proper

reasoning should ensure that the new configurations represent facts that follow from thefacts that

the old configurations represent.

• We want to generate new sentences that are necessarily true, given that the old sentences are true.

Page 63 MRCET-Artificial Intelligence

This relation between sentences is called entailment.

• In mathematical notation, the relation of entailment between a knowledge base KB and a sentence a

is pronounced "KB entails a" and written as

• An inference procedure can do one of two things:

• Given a knowledge base KB, it can generate new sentences a that purport to be entailed by KB.

• E.g., x + y = 4 entails 4 = x + y

• Entailment is a relationship between sentences (i.e., syntax) that is based on semantics.

PROPOSITIONAL LOGIC:

• Propositional logic (PL) is the simplest form of logic where all the statements are made by

propositions.

• A proposition is a declarative statement which is either true or false.

It is a technique of knowledge representation in logical and mathematical form.

Syntax of propositional logic:

• The symbols of prepositional logic are the logical constants True and False, proposition symbols

such as P and Q, the logical connectives A, V, <=>, =>and and parentheses,

• All sentences are made by putting these symbols together using the following rules:

• The logical constants True and False are sentences by themselves.

• A prepositional symbol such as P or Q is a sentence by itself.

• Wrapping parentheses around a sentence yields a sentence, for example, (P A Q).

Page 64 MRCET-Artificial Intelligence

A sentence can be formed by combining simpler sentences with one of the five logical connectives::

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive literal or

negative literal.

Example:P=Today is not Sunday -> ¬ p

1. Conjunction: A sentence which has 𝖠 connective such as, P 𝖠 Q is called a conjunction.

Example: Rohan is intelligent and hardworking. It can be written as,

P= Rohan is intelligent,

Q= Rohan is hardworking. → P𝖠 Q.

2. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called disjunction, where P and

Q are the propositions.

Example: "Ritika is a doctor or Engineer",

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q.

3. Implication: A sentence such as P → Q, is called an implication. Implications are also known asif-

then rules. It can be represented as

If it is raining, then the street is wet.

Let P= It is raining, and Q= Street is wet, so it is represented as P → Q

4. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am

breathing, then I am alive.

P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q.

Precedence of connectives:

Precedence Operators

First Precedence Parenthesis

Second Precedence Negation

Third Precedence Conjunction

(AND)Fourth Precedence

Disjunction(OR)

Fifth Precedence Implication

Six Precedence Biconditional

Page 65 MRCET-Artificial Intelligence

Precedence of connectives:

Semantics

• The semantics of prepositional logic is also quite straightforward. We define it by specifying the

interpretation of the proposition symbols and constants and specifying the meanings of the logical

connectives.

Validity

• Truth tables can be used not only to define the connectives, but also to test for valid sentences.

• Given a sentence, we make a truth table with one row for each of the possible combinations of truth

values for the proposition symbols in the sentence.

• If the sentence is true in every row, then the sentence is valid. For example, the sentence ((P V H)

A ¬H) => P

Translating English into logic:

• User defines semantics of each propositional symbol.

• P: It is Hot

• Q: It is Humid

• R: It is raining

1. If it is humid then it is hot

Q->P

.If it is hot and humid , then it is raining

(P A Q)->R

Limitations of Propositional logic:

• In propositional logic, we can only represent the facts, which are either true or false.

• PL is not sufficient to represent complex sentences or natural language statements.

• The propositional logic has very limited expressive power.

• Consider the following sentence, which we cannot represent using PL logic.

• "Some humans are intelligent", or "Sachine likes cricket.

Page 66 MRCET-Artificial Intelligence

First-order logic:

Advantages of Propositional Logic

 The declarative nature of propositional logic specify that knowledge and inference are separate,

and inference is entirely domain-independent. Propositional logic is a declarative language because

its semantics is based on a truth relation between sentences and possible worlds.

 It also has sufficient expressive power to deal with partial information, using disjunction and

negation.

 Propositional logic has a third COMPOSITIONALITY property that is desirable in representation

languages, namely, compositionality. In a compositional language, the meaning of a sentence is a

function of the meaning of its parts. For example, the meaning of ―S1,4𝖠 S1,2‖ is related to the

meanings of ―S1,4‖ and ―S1,2.

Drawbacks of Propositional Logic

Propositional logic lacks the expressive power to concisely describe an environment with many objects.

For example, we were forced to write a separate rule about breezes and pits for each square, such as

B1,1⇔ (P1,2 ∨P2,1).

In English, it seems easy enough to say, ―Squares adjacent to pitsarebreezy.

The syntax and semantics of English somehow make it possible to describe the environment concisely.

SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC

Models for first-order logic:

The models of a logical language are the formal structures that constitute the possible worlds under

consideration. Each model links the vocabulary of the logical sentences to elements of the possible world,

so that the truth of any sentence can be determined. Thus, models for propositional logic link proposition

symbols to predefined truth values. Models for first-order logic have objects. The domain of a model is

the set of objects or domain elements it contains. The domain is required to be nonempty—every possible

world must contain at least one object.

A relation is just the set of tuples of objects that are related.

Page 67 MRCET-Artificial Intelligence

Unary Relation: Relations relates to single Object Binary Relation: Relation Relates to multiple

objects Certain kinds of relationships are best considered as functions, in that a given object must be related

to exactly one object.

For Example:

Richard the Lionheart, King of England from 1189 to 1199; His younger brother, the evil King John, who

ruled from 1199 to 1215; the left legs of Richard and John; crown.

Unary Relation: John is a king Binary Relation :crown is on head of john , Richard is brother ofjohn The

unary "left leg" function includes the following mappings: (Richard the Lionheart) ->Richard's left leg

(King John) ->Johns left Leg

Symbols and interpretations

Symbols are the basic syntactic elements of first-order logic. Symbols stand for objects, relations, and

functions.

The symbols are of three kinds: Constant symbols which stand for objects; Example: John, Richard

Predicate symbols, which stand for relations; Example: On Head, Person, King, and Crown

Function symbols, which stand for functions. Example: left leg Symbols will begin with uppercase letters.

Interpretation The semantics must relate sentences to models to determine truth. For this to happen, we need

an interpretation that specifies exactly which objects, relations and functions are referred to by the constant,

predicate, and function symbols.

Page 68 MRCET-Artificial Intelligence

For Example:

Richard refers to Richard the Lionheart and John refers to the evil king John. Brother refers to the

brotherhood relation OnHead refers to the "on head relation that holds between the crown and King John;

Person, King, and Crown refer to the sets of objects that are persons, kings, and crowns. LeftLeg refers to

the "left leg" function,

The truth of any sentence is determined by a model and an interpretation for the sentence's symbols.

Therefore, entailment, validity, and so on are defined in terms of all possible models and all possible

interpretations. The number of domain elements in each model may be unbounded-for example, the domain

elements may be integers or real numbers. Hence, the number of possible models is abounded is the number of

interpretations.

Term

A term is a logical expression that refers to an object. Constant symbols are therefore terms. Complex

Terms A complex term is just a complicated kind of name. A complex term is formed by a function

symbol followed by a parenthesized list of terms as arguments to the function symbol For example: "King

John's left leg" Instead of using a constant symbol, we use Left Leg(John). The formal semantics of terms

Consider a term f (tl,. . . , t,). The function symbol frefers to some function in the model (F); the argument

terms refer to objects in the domain (call them d1….dn); and the termas a whole refers to the object that is the

value of the function Applied to dl, . . . , d,. For example, the LeftLeg function symbol refers to the

function ― (King John) -+ John's left leg‖ and John refers to King John, then LeftLeg(John) refers to King

John's left leg. In this way, the interpretation fixes the referent of every term.

Atomic sentences

An atomic sentence is formed from a predicate symbol followed by a parenthesized list of terms: For

Example: Brother (Richard, John).

Atomic sentences can have complex terms as arguments. For Example: Married (Father

(Richard),Mother(John)).

An atomic sentence is true in each model, under a given interpretation, if the relation referred to by the

predicate symbol holds among the objects referred to by the arguments.

Complex sentences Complex sentences can be constructed using logical Connectives, just as in

Page 69 MRCET-Artificial Intelligence

propositional calculus. For Example:

Thus, the sentence says, ―For all x, if x is a king, then x is a person. ‖ The symbol x is called a variable.

Variables are lowercase letters. A variable is a term all by itself and can also serve as the argument of

a function A term with no variables is called a ground term.

Assume we can extend the interpretation in different ways: x→ Richard the Lionheart, x→ King John, x→ Richard‘s

left leg, x→ John‘s left leg, x→ the crown

The universally quantified sentence ∀x King(x) ⇒Person(x) is true in the original model if the sentence King(x)

⇒Person(x) is true under each of the five extended interpretations. That is, the universally quantified sentence is

equivalent to asserting the following five sentences:

Richard the Lionheart is a king ⇒Richard the Lionheart is a person. King John is a king ⇒King John is a person.

Richard‘sleftlegisaking⇒Richard‘sleftleg is aperson. John‘s left legisaking⇒John‘s left leg is a person. The crown is

a king ⇒the crown is a person.

Existential quantification (∃)

Universal quantification makes statements about every object. Similarly, we can make a statement about some object

in the universe without naming it, by using an existential quantifier.

―The sentence ∃x P says that P is true for at least one object x. More precisely, ∃x P is true in each model if P is true in

at least nonextended interpretationthat assigns x to a domain element. ‖ ∃x is pronounced ―There exists an x such that. .

.‖ or ―For some x . . .‖.

Page 70 MRCET-Artificial Intelligence

For example, that King John has a crown on his head, we write ∃xCrown(x) 𝖠On Head(x, John) Given assertions:

Richard the Lionheart is a crown 𝖠Richard the Lionheart is on John‘s head; King John is a crown

𝖠King Johnison John‘s head; Richard‘s left legisacrown𝖠Richard‘s leftlegison John‘s head; John‘s left leg is a crown 𝖠John‘s

left legis on John‘s head; The crown is a crown 𝖠the crown is on John‘s head. The fifth assertion is true in the model, so

the original existentially quantified sentence is true in the model. Just as ⇒appears to be the natural connective to use

with ∀, 𝖠is the natural connective to use with ∃.

Nested quantifiers

One can express more complex sentences using multiple quantifiers.

For example, ―Brothers are siblings‖ can be written as ∀x∀y Brother (x, y) ⇒Sibling(x, y). Consecutive quantifiers of

the same type can be written as one quantifier with several variables.

For example, to say that siblinghood is a symmetric relationship, we can write∀x, y Sibling(x, y) ⇔Sibling(y, x).

In other cases we will have mixtures.

For example: 1. ―Everybody loves somebody‖ means that for every person, there is someone that person loves: ∀x∃y

Loves(x, y) . 2. On the other hand, to say ―There is someone who is loved by everyone, ‖ we write∃y∀x Loves(x, y) .

Connections between ∀and ∃

Universal and Existential quantifiers are actually intimately connected with each other, through negation.

Example assertions:

1. ― Everyone dislikes medicine‖ is the same as asserting ― there does not exist someone who likes medicine‖ , and vice versa:―∀x

￢Likes(x, medicine)‖ is equivalent to ―￢∃x Likes(x,medicine)‖.

2. ―Everyonelikesicecream‖ meansthat― thereisnoonewhodoesnotlikeice cream‖ :∀xLikes(x, IceCream) is equivalent

to ￢∃x ￢Likes(x, IceCream) .

Because ∀is really a conjunction over the universe of objects and ∃is a disjunction that they obey De

Morgan‘s rules. The De Morgan rules for quantified and unquantified sentences are as follows:

Page 71 MRCET-Artificial Intelligence

Equality

First-order logic includes one more way to make atomic sentences, other than using a predicateand terms .We can use

the equality symbol to signify that two terms refer to the same object.

For example,

―Father (John) =Henry‖ says that the object referred to by Father (John) and the object referred to

byHenry are the same.

Because an interpretation fixes the referent of any term, determining the truth of an equality sentence is simply a matter

of seeing that the referents of the two terms are the same object.The equality symbol can be used to state facts about a

given function.It can also be used with negation to insist that two terms are not the same object.

For example,

―Richard has at least two brothers‖ can be written as, ∃x, y Brother (x,Richard) 𝖠Brother (y,Richard

) 𝖠￢(x=y) .

The sentence

∃x, y Brother (x,Richard) 𝖠Brother (y,Richard) does not have the intended meaning.

In particular, it is true only in the model where Richard has only one brother considering the extended interpretation in

which both x and y are assigned to King John. The addition of ￢(x=y) rules out such models.

Page 72 MRCET-Artificial Intelligence

USING FIRST ORDER LOGIC Assertions and queries in first-order logic

Assertions:

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such sentences are

called assertions.

For example,

John is a king, TELL (KB, King (John)). Richard is a person. TELL (KB, Person (Richard)). All kings are

persons: TELL (KB, ∀x King(x) ⇒Person(x)).

Asking Queries:

We can ask questions of the knowledge base using ASK. Questions asked with ASK are called queries or

goals.

For example,

ASK (KB, King (John)) returns true.

Any query that is logically entailed by the knowledge base should be answered affirmatively. Fo

rexample, given the two preceding assertions, the query:

―ASK (KB, Person (John))‖ should also return true.

Page 73 MRCET-Artificial Intelligence

Substitution or binding list

We can ask quantified queries, such as ASK (KB, ∃x Person(x)).

The answer is true, but this is perhaps not as helpful as we would like. It is rather like answering.

―Can you tell me the time? ‖ with ―Yes. ‖

If we want to know what value of x makes the sentence true, we will need a different function,

ASKVARS, which we call with ASKVARS (KB, Person(x)) and which yields a stream of answers.

In this case there will be two answers: {x/John} and {x/Richard}. Such an answer is called a substitution

or binding list.

ASKVARS is usually reserved for knowledge bases consisting solely of Horn clauses, because in such

knowledge bases every way of making the query true will bind the variables to specific values.

The kinship domain

The objects in Kinship domain are people.

We have two unary predicates, Male and Female.

Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary predicates:

Parent, Sibling, Brother, Sister,Child, Daughter, Son, Spouse, Wife, Husband, Grandparent, Grandchild,

Cousin, Aunt, and Uncle.

We use functions for Mother and Father, because every person has exactly one of each of these.

We can represent each function and predicate, writing down what we know in termsof the other symbols.

For example: -

1. one‘s mother is one‘s female parent: ∀m, c Mother (c)=m ⇔Female(m) 𝖠Parent(m,

.

2. One‘s husband is one‘s male spouse: ∀w, h Husband(h,w) ⇔Male(h) 𝖠Spouse(h,w) .

3. Male and female are disjoint categories: ∀xMale(x) ⇔￢Female(x) .

4. Parent and child are inverse relations: ∀p, c Parent(p, c) ⇔Child (c, p) .

5. A grandparent is a parent of one‘s parent: ∀g, c Grandparent (g, c) ⇔∃p Parent(g, p) 𝖠Parent(p, c)

Page 74 MRCET-Artificial Intelligence

6. A sibling is another child of one‘s parents: ∀x, y Sibling(x, y) ⇔x _= y 𝖠∃p Parent(p, x)

𝖠Parent(p,

Axioms:

Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are commonly associated

with purely mathematical domains. They provide the basic information from which useful

conclusions can be derived.

Kinship axioms are also definitions; they have the form ∀x, y P(x, y) ⇔. . ..

The axioms define the Mother function, Husband, Male, Parent, Grandparent, and Sibling predicates in terms

of other predicates.

Our definitions ―bottom out‖ at a basic set of predicates (Child, Spouse, and Female) in terms of which the

others are ultimately defined. This is a natural way in which to build up the representation of a

domain, and it is analogous to the way in which software packages are built up by successive

definitions of subroutines from primitive library functions.

Theorems:

Not all logical sentences about a domain are axioms. Some are theorems—that is, they are entailed by the

axioms.

For example, consider the assertion that siblinghood is symmetric: ∀x, y Sibling(x, y) ⇔Sibling(y, x) .

It is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the knowledge

base this sentence, it should return true. From a purely logical point of view, a knowledge base need contain

only axioms and no theorems, because the theorems do not increase the set of conclusions that follow from

the knowledge base. From a practical point of view, theorems are essential to reduce the computational cost

of deriving new sentences. Without them, a reasoning system has to start from first principles every time.

Axioms: Axioms without Definition

Not all axioms are definitions. Some provide more general information about certain predicates without

Page 75 MRCET-Artificial Intelligence

constituting a definition. Indeed, some predicates have no complete definition because we do not know

enough to characterize them fully.

For example, there is no obvious definitive way to complete the sentence.

∀xPerson(x) ⇔. . .

Fortunately, first-order logic allows us to make use of the Person predicate without completely defining it.

Instead, we can write partial specifications of properties that every person has and properties that make

something a person:

∀xPerson(x) ⇒. . . ∀x . . . ⇒Person(x) .

Axioms can also be ―just plain facts, ‖ such as Male (Jim) and Spouse (Jim, Laura).Such facts form the

descriptions of specific problem instances, enabling specific questions to be answered. The answers to

these questions will then be theorems that follow from the axioms.

Numbers, sets, and lists Number theory

Numbers are perhaps the most vivid example of how a large theory can be built up from NATURAL

NUMBERS, a tiny kernel of axioms. We describe here the theory of natural numbers or non-negative integers.

We need:

predicate NatNum that will be true of natural numbers.

PEANO AXIOMS constant symbol, 0; One function symbol, S (successor). The Peano axioms define

natural numbers and addition.

Natural numbers are defined recursively: NatNum(0) . ∀n NatNum(n) ⇒ NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a natural number.

So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms to constrain the successor

function: ∀n 0 != S(n) . ∀m, n m != n ⇒ S(m) != S(n) .

Now we can define addition in terms of the successor function: ∀m NatNum(m) ⇒ + (0, m) = m .

∀m, n NatNum(m) 𝖠 NatNum(n) ⇒ + (S(m), n) = S(+(m, n))

Page 76 MRCET-Artificial Intelligence

The first of these axioms says that adding 0 to any natural number m gives m itself. Addition is

represented using the binary function symbol +‖ in the term + (m, 0);

To make our sentences about numbers easier to read, we allow the use of infix notation. We can also write

S(n) as n + 1, so the second axiom becomes:

∀m, n NatNum (m) 𝖠 NatNum(n) ⇒ (m + 1) + n = (m + n) +1 .

This axiom reduces addition to repeated application of the successor function. Once we have addition, it is

straightforward to define multiplication as repeated addition, exponentiation as repeated multiplication,

integer division and remainders, prime numbers, and so on. Thus, the whole number theory (including

cryptography) can be built up from one constant, one function, one predicate and four axioms.

Sets

The domain of sets is also fundamental to mathematics as well as to commonsense reasoning. Sets can be

represented as individual sets, including empty sets.

Sets can be built up by:

adding an element to a set or

Taking the union or intersection of two sets.

Operations that can be performed on sets are:

To know whether an element is a member of a set Distinguish sets from objects that are not sets.

Vocabulary of set theory:

The empty set is a constant written as { }. There is one unary predicate, Set, which is true of sets. The binary

predicates are

x∈ s (x is a member of set s) s1 ⊆ s2 (set s1 is a subset, not necessarily proper, of set s2).

The binary functions are

s1 ∩ s2 (the intersection of two sets), s1 𝖴 s2 (the union of two sets), and {x|s} (the set resulting from

adjoining element x to set s).

Page 77 MRCET-Artificial Intelligence

Forward Chaining and backward chaining in AI

Inference engine:

The inference engine is the component of the intelligent system in artificial intelligence, which applies

logical rules to the knowledge base to infer new information from known facts. The first inference engine

was part of the expert system. Inference engine commonly proceeds in two modes, which are:

a. Forward chaining

b. Backward chaining

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which enables knowledge base to use a more

restricted and efficient inference algorithm. Logical inference algorithms use forward and backward

chaining approaches, which require KB in the form of the first-order definite clause.

Definite clause: A clause which is a disjunction of literals with exactly one positive literal is known as

a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one positive literal is known as

horn clause. Hence all the definite clauses are horn clauses.

Example: (¬ p V ¬ q V k). It has only one positive literal k.

It is equivalent to p A q → k.

A. Forward Chaining

Forward chaining is also known as a forward deduction or forward reasoning method when using an

inference engine. Forward chaining is a form of reasoning which starts with atomic sentences in the

knowledge base and applies inference rules (Modus Ponens) in the forward direction to extract more data

until a goal is reached.

The Forward-chaining algorithm starts from known facts, triggers all rules whose premises are satisfied,

and adds their conclusion to the known facts. This process repeats until the problem is solved.

Properties of Forward-Chaining:

o It is a down-up approach, as it moves from bottom to top.

o It is a process of making a conclusion based on known facts or data, by starting from the initial

state and reaching the goal state.

o Forward-chaining approach is also called as data-driven as we reach to the goal using available.

Page 78 MRCET-Artificial Intelligence

data.

o Forward -chaining approach is commonly used in the expert system, such as CLIPS, business,

and production rule systems.

Consider the following famous example which we will use in both approaches:

Facts Conversion into FOL:

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and r are variables)

American (p) 𝖠 weapon(q) 𝖠 sells (p, q, r) 𝖠 hostile(r) → Criminal(p) ...(1)

o Country A has some missiles. ?p Owns(A, p) A Missile(p). It can be written in two definite clauses

by using Existential Instantiation, introducing new Constant T1. Owns(A,

T1) (2)

Missile(T1)(3)

o All of the missiles were sold to country A by Robert.

?p Missiles(p) 𝖠 Owns (A, p) → Sells (Robert, p, A) (4)

o Missiles are weapons.

Missile(p) → Weapons (p) (5)

o Enemy of America is known as hostile.

Enemy(p, America) →Hostile(p) (6)

o CountryA is an enemy of America.

Enemy (A, America) (7)

o RobertisAmerican

American(Robert)(8)

Forward chaining proof:

Step-1:

In the first step we will start with the known facts and will choose the sentences which do not have

implications, such as: American (Robert), Enemy(A, America), Owns(A, T1), and Missile(T1). All

these facts will be represented below.

Page 79 MRCET-Artificial Intelligence

Step-2:

At the second step, we will see those facts which infer from available facts and with satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the first iteration.

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which infers from the

conjunction of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers from Rule-(7).

Step-3:

At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1, r/A}, so we can

add Criminal(Robert) which infers all the available facts. And hence we reached our goal statement.

Hence it is proved that Robert is Criminal using forward chaining approach.

Page 80 MRCET-Artificial Intelligence

Backward Chaining:

Backward-chaining is also known as a backward deduction or backward reasoning method when using an

inference engine. A backward chaining algorithm is a form of reasoning, which starts with the goal and works

backward, chaining through rules to find known facts that support the goal.

Properties of backward chaining:

o It is known as a top-down approach.

o Backward-chaining is based on modus ponens inference rule.

o In backward chaining, the goal is broken into sub-goal or sub-goals to prove the facts true.

o It is called a goal-driven approach, as a list of goals decides which rules are selected and used.

o Backward -chaining algorithm is used in game theory, automated theorem proving tools,

inference engines, proof assistants, and various AI applications.

o The backward-chaining method mostly used a depth-first search strategy for proof.

Example:

In backward chaining, we will use the same above example, and will rewrite all the rules.

o American (p) 𝖠 weapon(q) 𝖠 sells (p, q, r) 𝖠 hostile(r) → Criminal(p) ...(1)

Owns(A, T1) (2)

o Missile(T1)

o ?p Missiles(p) 𝖠 Owns (A, p) → Sells (Robert, p, A) (4)

o Missile(p) → Weapons (p) (5)

o Enemy(p, America) →Hostile(p).......................... (6)

o Enemy (A, America) (7)

o American(Robert) (8)

Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which is Criminal(Robert), and then infer

further rules.

Step-1:

At the first step, we will take the goal fact. And from the goal fact, we will infer other facts, and at last, we

will prove those facts true. So our goal fact is "Robert is Criminal," so following is the predicate of it.

Page 81 MRCET-Artificial Intelligence

Step-2:

At the second step, we will infer other facts form goal fact which satisfies the rules. So, as we can see

inRule-1, the goal predicate Criminal (Robert) is present with substitution {Robert/P}. So, we will add

allthe conjunctive facts below the first level and will replace p with Robert.

Here we can see American (Robert) is a fact, so it is proved here.

Step-3:t at step-3, we will extract further fact Missile(q) which infer from Weapon(q), as it satisfies

Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at q.

Step-4:

At step-4, we can infer facts Missile(T1) and Owns (A, T1) form Sells(Robert, T1, r) which satisfies

Page 82 MRCET-Artificial Intelligence

Rule- 4, with the substitution of A in place of r. So, these two statements are proved here.

Step-5:

At step-5, we can infer the fact Enemy (A, America) from Hostile(A) which satisfies Rule- 6. And

hence all the statements are proved true using backward chaining.

Page 83 MRCET-Artificial Intelligence

Difference between backward chaining and forward chaining

Forward Chaining Backward Chaining

No.

1

.

Forward chaining

starts from known facts

and applies inference rule

to extract more data unit it

reaches to the goal.

Backward chaining

starts from the goal and

works backward through

inference rules to find the

required facts that support

the goal.

2

.

It is a bottom-up

approach

It is a top-down

approach

3

.

Forward chaining is

known as data-driven

inference technique as we

reach to the goal using the

available data.

Backward chaining is

known as goal-driven

technique as we start from

the goal and divide into

sub-goal to extract the

facts.

4

.

Forward chaining

reasoning applies a

breadth-first search

strategy.

Backward chaining

reasoning applies a depth-

first search strategy.

5

.

Forward chaining

tests for all the available

rules

Backward chaining

only tests for few required

rules.

6

.

Forward chaining is

suitable for the planning,

monitoring, control, and

interpretation application.

Backward chaining is

suitable for diagnostic,

prescription, and

debugging application.

7

.

Forward chaining can

generate an infinite

number of possible

conclusions.

Backward chaining

generates a finite numberof

possible conclusions.

8

.

It operates in the

forward direction.

It operates in the

backward direction.

9

.

Forward chaining is

aimed for any conclusion.

Backward chaining is

only aimed for the required

data.

Page 84 MRCET-Artificial Intelligence

Basic probability notation

• Prior probability: We will use the notation P(A) for the unconditional or prior probability that

the proposition A is true.

• For example, if Cavity denotes the proposition that a particular patient has a cavity, P(Cavity) =

means that in the absence of any other information, the agent will assign a probability of

0.1(a 10%chance)

• It is important to remember that P(A) can only be used when there is no other information. As

soon as some new information B is known, we must reason with the conditional probability of A

given B instead of P(A) to the event of the patient's having a cavity.

• Propositions can also include equalities involving so-called random variables.

• For example, if we are concerned about the random variable Weather,

we might have P(Weather = Sunny) = 0.7

P(Weather = Rain) = 0.2

P(Weather= Cloudy) = 0.08

P(Weather = Snow) = 0.02

Each random variable X has a domain of possible values (x1,...,xn) that it can take on.

• We can view proposition symbols as random variables as well, if we assume that they have a

domain [true, false).

• Thus, the expression P(Cavity) can be viewed as shorthand for P(Cavity = true).

• Similarly, P(->Cavity) is shorthand for P(Cavity =false).

• Sometimes, we will want to talk about the probabilities of all the possible values of a random

variable. In this case, we will use an expression such as P(Weather)

• for example, we would write P(Weather) = (0.7,0.2,0.08,0.02)

This statement defines a probability distribution

• We can also use logical connectives to make more complex sentences and assign probabilities to

them.

For example, P(Cavity A ¬Insured)

Conditional probability:

• Once the agent has obtained some evidence concerning the previously unknown propositions

making up the domain, prior probabilities are no longer applicable.

Instead, we use conditional or posterior probabilities, with the notation P(A|B)

Page 85 MRCET-Artificial Intelligence

• This is read as "the probability of A given that all we know is B."

• P(B|A) means "Event B given Event A"

• In other words, event A has already happened, now what is the chance of event B?

• P(B|A) is also called the "Conditional Probability" of B given A.

Ex: Drawing 2 Kings from a Deck

• Event A is drawing a King first, and Event B is drawing a King second.

• For the first card the chance of drawing a King is 4 out of 52 (there are 4 Kings in a deck of 52

cards):

• P(A) = 4/52

• But after removing a King from the deck the probability of the 2nd card drawn is less likely to

be a King (only 3 of the 51 cards left are Kings):

• P(B|A) = 3/51

And so: P(A and B) = P(A) x P(B|A) = (4/52) x (3/51) = 12/2652 = 1/221

• So, the chance of getting 2 Kings is 1 in 221, or about 0.5

BAYES Theorem:

• Bayes' Theorem is a way of finding probability when we know certain other probabilities.

The formula is

• Which tells us: how often A happens given that B happens, written P(A|B),

• When we know: How often B happens given that A happens, written P(B|A)

• and how likely A is on its own, written P(A)

• and how likely B is on its own, written P(B)

Example:

• Dangerous fires are rare (1%)

• But smoke is fairly common (10%) due to barbecues, and 90% of dangerous fires make

smokeWe can then discover the probability of dangerous Fire when there is Smoke:

Page 86 MRCET-Artificial Intelligence

P(Fire|Smoke) =P(Fire) P(Smoke|Fire)/P(Smoke)

=1% x 90/10%

=9%

So it is still worth checking out any smoke to be sure.

Example 2:

You are planning a picnic today, but the morning is cloudy

Oh no! 50% of all rainy days start off cloudy!

But cloudy mornings are common (about 40% of days start cloudy)

And this is usually a dry month (only 3 of 30 days tend to be rainy, or 10%)

What is the chance of rain during the day?

We will use Rain to mean rain during the day, and Cloud to mean cloudy morning.

The chance of Rain given Cloud is written P(Rain|Cloud)

So let's put that in the formula:

P(Rain|Cloud) = P(Rain) P(Cloud|Rain)/P(Cloud)

P(Rain) is Probability of Rain = 10%

P(Cloud|Rain) is Probability of Cloud, given that Rain happens = 50%

P(Cloud) is Probability of Cloud = 40%

P(Rain|Cloud) = 0.1 x 0.5/0.4 = .125

Or a 12.5% chance of rain. Not too bad, let's have a picnic!

Page 87 MRCET-Artificial Intelligence

UNIT-III

Artificial intelligence is a system that is concerned with the study of understanding, designing and

implementing the ways associated with knowledge representation to computers.

In any intelligent system, representing knowledge is supposed to be an important technique to encodethe

knowledge.

The main objective of AI systems is to design the programs that provide information to the computer,

which can be helpful to interact with humans and solve problems in various fields which require human

intelligence.

What is Knowledge?

Knowledge is an useful term to judge the understanding of an individual on a given subject.

In intelligent systems, domain is the main focused subject area. So, the system specifically focuses on

acquiring the domain knowledge.

Issues in knowledge representation

The main objective of knowledge representation is to draw conclusions from the knowledge, but thereare

many issues associated with the use of knowledge representation techniques.

Refer to the above diagram to refer to the following issues.

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues,
Nonmonotonic Reasoning, Other Knowledge Representation Schemes Reasoning Under
Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge
in an Uncertain Domain, Bayesian Networks

Page 88 MRCET-Artificial Intelligence

1. Important attributes

There are two attributes shown in the diagram, instance and isa. Since these attributes support property of

inheritance, they are of prime importance.

2. Relationships among attributes

Basically, the attributes used to describe objects are nothing but the entities. However, the attributes of an

object do not depend on the encoded specific knowledge.

3. Choosing the granularity of representation

While deciding the granularity of representation, it is necessary to know the following:

i. What are primitives and at what level should the knowledge be represented?

ii. What should be the number (small or large) of low-level primitives or high-level facts?

High-level facts may be insufficient to draw the conclusion while Low-level primitives may

require a lot of storage.

For example: Suppose that we are interested in following facts:

John spotted Alex.

Now, this could be represented as "Spotted (agent (John), object (Alex))"

Such a representation can make it easy to answer questions such as: Who spotted Alex?

Suppose we want to know: "Did John see Sue?"

Given only one fact, the user cannot discover that answer.

Hence, the user can add other facts, such as "Spotted (x, y) → saw (x, y)"

4. Representing sets of objects.

There are some properties of objects which satisfy the condition of a set together but not as individual;

Example: Consider the assertion made in the sentences:

"There are more sheep than people in Australia", and "English speakers can be found all over the world."

These facts can be described by including an assertion to the sets representing people, sheep, and English.

5. Finding the right structure as needed

To describe a particular situation, it is always important to find the access to the right structure. This can

bedone by selecting an initial structure and then revising the choice.

While selecting and reversing the right structure, it is necessary to solve the following problem statements.

They include the process on how to:

Page 89 MRCET-Artificial Intelligence

 Select an initial appropriate structure.

 Fill the necessary details from the current situations.

 Determine a better structure if the initially selected structure is not appropriate to fulfill other conditions.

 Find the solution if none of the available structures is appropriate.

 Create and remember a new structure for the given condition.

 There is no specific way to solve these problems, but some of the effective knowledge representation

techniques have the potential to solve them.

Non- M o n o t o n i c reasoning:

● In Non-monotonic reasoning, some conclusions may be invalidated if we add some more information to

our knowledge base.

● Logic will be said as non-monotonic if some conclusions can be invalidated by adding more knowledge

into our knowledge base.

● Non-monotonic reasoning deals with incomplete and uncertain models.

● "Human perceptions for various things in daily life, "is a general example of non-monotonic reasoning.

Example: Let suppose the knowledge base contains the following knowledge:

● Birds can fly.

● Penguins cannot fly.

● Pitty is a bird.

So, from the above sentences, we can conclude that Pitty can fly.

However, if we add one another sentence into knowledge base "Pitty is a penguin", which concludes

"Pitty cannot fly", so it invalidates the above conclusion.

ACTING UNDER UNCERTAINTY

Agents may need to handle uncertainty, w hether due to partial observability, non- determinism or

combination of two.

Summarizing Uncertainity:

Consider the following Simple rule:

Toothache=> Cavity

Not all the patients with toothaches have cavities, some of them may have gum disease ,an abscess or

Page 90 MRCET-Artificial Intelligence

some other problems

Toothache=>cavity V Gum Problem V Abscess….

Unfortunately, in order to make the rule true we have to add an almost unlimited list of possible problems

Trying to use first-order logic to cope with a domain like medical diagnosis thus fails for three main

reasons:

Laziness: It is too much work to list the complete set of antecedents or consequents needed to ensure an

exceptionless rule, and too hard to use the enormous rules that result.

Theoretical ignorance: Medical science has no complete theory for the domain.

Practical ignorance: Even if we know all the rules, we may be uncertain about a particular patient

because all the necessary tests have not or cannot be run.

The agent's knowledge can at best provide only a degree of belief in the relevant sentences. Our main tool

for dealing with degrees of belief will be probability theory, which assigns a numerical degree of belief

between 0 and 1 to sentences.

Probability provides a way of summarizing the uncertainty that comes from our laziness and ignorance.

We may not know for sure what afflicts a particular patient, but we believe that there is, say, an 80%

chance—that is, a probability of 0.8—that the patient has a cavity if he or she has a toothache.

BASIC PROBABILITY NOTATION

Prior probability We will use the notation P(A) for the unconditional or prior probability that the

proposition A is true.

For example, if Cavity denotes the proposition that a particular patient has a cavity,

P(Cavity) = 0

means that in the absence of any other information, the agent will assign a probability of 0.1 (a 10%

chance) to the event of the patient's having a cavity.

It is important to remember that P(A) can only be used when there is no other information. As soon as

some new information B is known, we must reason with the conditional probability of A given B instead

of P(A).

The proposition that is the subject of a probability statement can be represented by a proposition symbol,

as in the P(A) example. Propositions can also include equalities involving so-called random variables. For

example, if we are concerned about the random variable Weather, we might have.

Page 91 MRCET-Artificial Intelligence

P(Weather = Sunny) = 0.7

P(Weather = Rain) = 0.2

P(Weather= Cloudy) = 0.08

P(Weather = Snow) = 0.02

Each random variable X has a domain of possible values (x\,...,xn) that it can take on

We can view proposition symbols as random variables as well, if we assume that they have a domain

[true,false). Thus, the expression P(Cavity) can be viewed as shorthand for P(Cavity = true). Similarly,

P(->Cavity) is shorthand for P(Cavity =false). Usually, we will use the letters A, B, and so on for Boolean

random variables, and the letters X, Y, and so on for multivalued variables.

Sometimes, we will want to talk about the probabilities of all the possible values of a random variable.

In this case, we will use an expression such as P(Weather), which denotes vector of values for the

probabilities of each individual state of the weather.

Given the preceding values, for example, we would write P(Weather) = (0.7,0.2,0.08,0.02)

This statement defines a probability distribution for the random variable Weather.

We will also use expressions such as P(Weather, Cavity) to denote the probabilities of all combinations

of the values of a set of random variables.

In this case, P(Weather, Cavity) denotes a 4 x 2 table of probabilities. We will see that this notation

simplifies many equations. We can also use logical connectives to make more complex sentences and

assign probabilities to them. For example, P(Cavity A -^Insured) - 0.06 says there is an 6% chance that a

patient has a cavity and has no insurance

Conditional probability:

 Once the agent has obtained some evidence concerning the previously unknown propositions

making up the domain, prior probabilities are no longer applicable. Instead, we use conditional or

posterior probabilities, with the notation P(A|B).

 This is read as "the probability of A given that all we know is B."

For example, indicates that if a patient is observed to have a toothache, and no other information is yet

available,

then the probability of the patient having a cavity will be 0.8.

 It is important to remember that P(A|B) can only be used when all we know is B. As soon as we

Page 92 MRCET-Artificial Intelligence

know C, then we must compute.

 P(A|B A C) instead of P(A|B). A prior probability P(A) can be thought of as a special case of

conditional probability P(A\), where the probability is conditioned on no evidence.

 We can also use the P notation with conditional probabilities. P(X| Y) is a two-dimensional

table giving the values of P(X=x,|Y = yj) for each possible I, j. Conditional probabilities can be

defined in terms of unconditional probabilities. The equation

Axioms of Probability:

 All probabilities are between 0 and 1.

0 < P(A) < 1

 Necessarily true (i.e., valid) propositions have probability 1, and necessarily false (i.e.,

unsatisfiable) propositions have probability 0. P(True) = 1 P(False) = 0

 The probability of a disjunction is given by P(A V 5) = P(A) + P(B) - P(A A B)

The joint probability distribution

The joint probability distribution (or "joint" for short), which completely specifies an agent's probability

assignments to all propositions in the domain (both simple and complex).

A probabilistic model of a'domain consists of a set of random variables that can take on valueswith certain

probabilities. Let the variables be X\ ... Xn.

An atomic event is an assignment of values to all the variables—in other words, a complete

specification of the state of the domain.

The joint probability distribution P(X],.. . ,Xn) assigns probabilities to all possible atomic events. Recall

that P(X,) is a one-dimensional vector of probabilities for the possible values of the variable X,-. Then

Page 93 MRCET-Artificial Intelligence

the joint is an w-dimensional table with a value in every cell giving the probability of that specific state

occurring. Here is a joint probability distribution for the trivial medical domain consisting of the two

Boolean variables Toothache and Cavity:

Adding across a row or column gives the unconditional probability of a variable, for example, P(Cavity)

= 0.06 + 0.04 = 0.10.

P(Cavity V Toothache) = 0.04 + 0.01 + 0.06 = 0.11

Bayes Rule:

Representing knowledge in uncertain domain

In the context of using Bayes' rule, conditional independence relationships among variables can simplify the

computation of query results and greatly reduce the number of conditional probabilities that need to be

specified. We use a data structure called a belief BELIEF NETWORK network' to represent the dependence

between variables and to give a concise specification of the joint probability distribution.

A Bayesian Network Is a directed graph in which each node is annotated with quantitative probability

information.

Page 94 MRCET-Artificial Intelligence

The full specification is as follows:

1. Each node corresponds to a random variable, which can be discrete or continuous.

2. f A set of directed links or arrows connects pairs of nodes. If there is an arrow from node X to node Y ,X I

s said to be parent of Y.The graph has no directed cycles and hence it is called directed acyclic

graph(DAG)

3. Each node Xi has a conditional probability distribution P(Xi|Parents(Xi)) that quantifies the effect of the

parents on the node.

The intuitive meaning of an arrow from node X to node Y is that X has a direct influence on Y

Consider the following situation. You have a new burglar alarm installed at home. It is reliable at

detecting a burglary, but also responds on occasion to minor earthquakes. (This example is due to Judea

Pearl, a resident of Los Angeles; hence the acute interest in earthquakes.) You also have two neighbors,

John and Mary, who have promised to call you at work when they hear the alarm. John always calls when

he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.

Mary, on the other hand, likes rather loud music and sometimes misses the alarm altogether. Given the

evidence of who has or has not called, we would like to estimate the probability of a burglary.

This simple domain is described by the belief network in Figure 15.2

Page 95 MRCET-Artificial Intelligence

Notice that the network does not have nodes corresponding to Mary currently listening to loud music, or

to the telephone ringing and confusing John. These factors are summarized in the uncertainty associated

with the links from Alarm to JohnCalls and MaryCalls.

This shows both laziness and ignorance in operation: it would be a lot of work to determine any reason

why those factors would be more or less likely in any case, and we have no reasonable way to obtain the

relevant information anyway.

The probabilities actually summarize a potentially infinite set of possible circumstances in which the

alarm might fail to go off (high humidity, power failure, dead battery, cut wires, dead mouse stuck inside

bell,...) or John or Mary might fail to call and report it (out to lunch, on vacation, temporarily deaf,

passing helicopter, ...). In this way, a small agent can cope with a very large world, at least approximately.

The degree of approximation can be improved if we introduce additional relevant information.

Bayesian belief network
Bayesian belief network is key computer technology for dealing with probabilistic events and to solve a

problem which has uncertainty. We can define a Bayesian network as:

"A Bayesian network is a probabilistic graphical model which represents a set of variables and their

conditional dependencies using a directed acyclic graph."

It is also called a Bayes network, belief network, decision network, or Bayesian model.

Bayesian networks are probabilistic, because these networks are built from a probability distribution, and

also use probability theory for prediction and anomaly detection.

Page 96 MRCET-Artificial Intelligence

Bayesian Network can be used for building models from data and experts’ opinions, and it consists of two

parts:

Directed Acyclic Graph

Table of conditional probabilities.

The generalized form of Bayesian network that represents and solves decision problems under uncertain

knowledge is known as an Influence diagram.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

o Each node corresponds to the random variables, and a variable can be continuous or discrete.

o Arc or directed arrows represent the causal relationship or conditional probabilities between random
variables. These directed links or arrows connect the pair of nodes in the graph.

These links represent that one node directly influence the other node, and if there is no directed link that

means that nodes are independent with each other.

o In the above diagram, A, B, C, and D are random variables represented by the nodes of the network graph.

o If we are considering node B, which relates to node A by a directed arrow, then node A is called theparent of
Node B.

o Node C is independent of node A.

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi)), which

determines the effect of the parent on that node.

Bayesian network is based on Joint probability distribution and conditional probability. So let's first

understand the joint probability distribution:

Joint probability distribution:

If we have variables x1, x2, x3,, xn, then the probabilities of a different combination of x1, x2, x3.. xn, are

known as Joint probability distribution.

P[x1, x2, x3,.... , xn], it can be written as the following way in terms of the joint probability distribution.

= P[x1| x2, x3,....., xn]P[x2, x3, , xn]

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn] P[xn-1|xn]P[xn].

In general for each variable Xi, we can write the equation as:

Page 97 MRCET-Artificial Intelligence

P(Xi|Xi-1,......... , X1) = P(Xi |Parents(Xi))

Explanation of Bayesian network:

Let's understand the Bayesian network through an example by creating a directed acyclic graph:

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably responds at

detecting a burglary but also responds for minor earthquakes. Harry has two neighbors, David and Sophia,

who have taken a responsibility to inform Harry at work when they hear the alarm. David always calls Harry

when he hears the alarm, but sometimes he got confused with the phone ringing and calls at that time too. On

the other hand, Sophia likes to listen to high music, so sometimes she misses hearing the alarm. Here we

would like to compute the probability of Burglary Alarm.

Problem:

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an earthquake

occurred, and David and Sophia both called Harry.

Solution:

The Bayesian network for the above problem is given below. The network structure shows that burglary and

earthquake is the parent node of the alarm and directly affecting the probability of alarm's going off, but David

and Sophia's calls depend on alarm probability.

The network represents that our assumptions do not directly perceive the burglary and also do not notice the

minor earthquake, and they also do not confer before calling.

The conditional distributions for each node are given as conditional probabilities table or CPT.

Each row in the CPT must be summed to 1 because all the entries in the table represent an exhaustive set of

cases for the variable.

In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if there are two parents,

then CPT will contain 4 probability values.

List of all events occurring in this network:

Burglary (B)

Earthquake(E)

Alarm(A)

David Calls(D)

Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can rewrite the

above probability statement using joint probability distribution:

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]

Page 98 MRCET-Artificial Intelligence

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

P [D| A]. P [S| A, B, E]. P[A, B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B |E]. P[E]

Let's take the observed probability for the Burglary and earthquake component:

P(B= True) = 0.002, which is the probability of burglary.

P(B= False)= 0.998, which is the probability of no burglary.

P(E= True)= 0.001, which is the probability of a minor earthquake

P(E= False)= 0.999, Which is the probability that an earthquake not occurred.

Conditional probability table for Alarm A:

The Conditional probability of Alarm A depends on Burglar and earthquake:

B E P(A= True) P(A= False)

True True 0.94 0.06

True False 0.95 0.04

False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for David Calls:

Page 99 MRCET-Artificial Intelligence

The Conditional probability of David that he will call depends on the probability of Alarm.

A P(D= True) P(D= False)

True 0.91 0.09

False 0.05 0.95

Conditional probability table for Sophia Calls:

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm."

A P(S= True) P(S= False)

True 0.75 0.25

False 0.02 0.98

From the formula of joint distribution, we can write the problem statement in the form of probability

distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

from the formula of joint distribution, we can write the problem statement in the form of probability

distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ̂ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

.

Page 100 Artificial Intelligence

UNIT-IV

What is learning?

Most often heard criticisms of AI is that machines cannot be called intelligent until they are able to learn to

do new things and adapt to new situations, rather than simply doing as they are told to do.

Some critics of AI have been saying that computers cannot learn!

Definitions of Learning: changes in the system that are adaptive in the sense that they enable the system to

do the same task or tasks drawn from the same population more efficiently and more effectively the next

time.

 Learning covers a wide range of phenomenon:

 Skill refinement: Practice makes skills improve. More you play tennis, better you get

 Knowledge acquisition: Knowledge is generally acquired through experience.

Various learning mechanisms:

Rote learning:
 Rote Learning is basically memorisation.

• Saving knowledge so it can be used again.

• Retrieval is the only problem.

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem

Solving,

Learning from Examples: Winston‘s Learning Program, Decision Trees.

Page 101 Artificial Intelligence

• No repeated computation, inference or query is necessary.

• A simple example of rote learning is caching.

• Store computed values (or large piece of data)

• Recall this information when required by computation.

• Significant time savings can be achieved.

• Many AI programs (as well as more general ones) have used caching very effectively.

Checkers game:

 Samuel's Checkers program employed rote learning (it also used parameter adjustment

which will be discussed shortly).

 A minimax search was used to explore the game tree.

 Time constraints do not permit complete searches.

 It records board positions and scores at search ends.

 Now if the same board position arises later in the game the stored value can be recalled,and

the end effect is that deeper searched have occurred.

Page 102 Artificial Intelligence

 Rote learning is basically a simple process. However it does illustrate some issuesthat are

relevant to more complex learning issues.

Organisation

 -- access of the stored value must be faster than it would be to recompute it. Methodssuch as

hashing, indexing and sorting can be employed to enable this.

 E.g Samuel's program indexed board positions by noting the number of pieces.

Generalisation

 -- The number of potentially stored objects can be very large. We may need to

generalise some information to make the problem manageable.

E.g Samuel's program stored game positions only for white to move. Also, rotations along

diagonals are combined.

Learning by taking advice:

This is a simple form of learning. Suppose a programmer writes a set of instructions to instruct

the computer what to do, the programmer is a teacher, and the computer is a student.

Once learned (i.e. programmed), the system will be in a position to do new things.

The advice may come from many sources: human experts, internet to name a few. This type of

learning requires more inference than rote learning.

Page 103 Artificial Intelligence

The knowledge must be transformed into an operational form before stored in the knowledge base.

 FOO (First Operational Operationalize), for example, is a learning system which is used to learnthe

game of Hearts.

 It converts the advice which is in the form of principles, problems, and methods into effective

executable (LISP) procedures (or knowledge). Now this knowledge is ready to use.

 A human user first translates the advice from English into a representation.

That foo can understand.

For eg: ―Avoid taking points‖

Avoid (take points me) (trick)

Achieve (not (d u r i n g (trick)(take point-me)))))

Learning in Problem Solving- learning by Parameter Adjustment

Many programs rely on an evaluation procedure to summarise the state of search etc. Game playing

programs provide many examples of this.

However, many programs have a static evaluation function to get a score that achieves the desirable board

position.

In learning a slight modification of the formulation of the evaluation of the problem is required.

Here the problem has an evaluation function that is represented as a polynomial of the form such as:

The ‗t‘terms are the values that contribute to the evaluation. The ‗C ‘terms are the coefficients

(weights) that are attached to these values.

 But many moves must have contributed to that final outcome, even if the program wins itmay

have made some wrong moves along the way.

 Because of the limitations Samuel program did two things:

 When the program is in learning mode paly against the copy of itself, At the end of the game if

the modified function won then the modified version is accepted otherwise the old one is

retained.

 Periodically, one term in the scoring function was eliminated and replaced by another.

Page 104 Artificial Intelligence

Learning in Problem Solving-Learning with macro-operators:
 The basic idea here is similar to Rote Learning: Avoid expensive recomputation

 Macro-operators can be used to group a whole series of actions into one.

 For example: Making dinner can be described as laying the table, cook dinner, serve

dinner. Wecould treat laying the table as an action even though it involves a sequence of actions.

 The STRIPS problem-solving employed macro-operators in its learning phase.

 Consider a blocks world example in which ON(C,B) and ON(A,TABLE) are true.

 STRIPS can achieve ON(A,B) in four steps:

UNSTACK(C,B), PUTDOWN(C), PICKUP(A),

STACK(A,B)

STRIPS now builds a macro-operator MACROP with preconditions ON(C,B), ON(A,TABLE),

postconditions ON(A,B), ON(C,TABLE) and the four steps as its body.

MACROP can now be used in future operations.

But it is not very general. The above can be easily generalized with variables used in place of the blocks.

However, generalization is not always that easy

Non- S er ia l iz able subgoals:

 Non serializability means that working on one subgoal will necessarily interfere with

previous solution to another subgoal.

 Macro operators can be used for games like 8-Puzzle (foe ex we have correctly placed 4

tilesand our job is to put fifth without disturbing the earlier tiles.

 A macro will not disturb 4 files externally (but within the macro tiles are disturbed).

Learning in Problem Solving-Learning from chunking:
 Chunking is similar to learnig with macro-operators. Generally, it is used by problem

solver systems that make use of production systems.

 A production system consists of a set of rules that are in if-then form. That is given a particular

situation, what are the actions to be performed. For example, if it is raining then take umbrella

 To solve a problem, a system will compare the present situation with the left hand side of the

rules. If there is a match then the system will perform the actions described in the right hand

Page 105 Artificial Intelligence

side of the corresponding rule.

 Problem solvers solve problems by applying the rules. Some of these rules may be more useful

than others and the results are stored as a chunk. Chunking can be used to learn general search

control knowledge.

 Several chunks may encode a single macro-operator and one chunk may participate in several

macro sequences. Chunks learned in the beginning of problem solving may be used in the later

stage. The system keeps the chunk to use it in solving other problems.

 Soar is a general cognitive architecture for developing intelligent systems. Soar requires

knowledge to solve various problems. It acquires knowledge using chunking

mechanism.

 An impasse arises when the system does not have sufficient knowledge. Consequently, Soar

chooses a new problem space (set of states and the operators that manipulate the states) in a bid

to resolve the impasse.

 While resolving the impasse, the individual steps of the task plan are grouped into larger steps

known as chunks.

 The chunks decrease the problem space search and so increase the efficiency of performing the

task.

 in Soar, the knowledge is stored in long-term memory. Soar uses the chunking mechanism to

create productions that are stored in long-term memory.

 A chunk is nothing but a large production that does the work of an entire sequence of smaller

ones.

 The productions have a set of conditions or patterns to be matched to working memory which

consists of current goals, problem spaces, states and operators and a set of actions to perform

when the production fires.

 Chunks are generalized before storing. When the same impasse occurs again, the chunks

collected can be used to resolve it.

Learning from Examples-Induction:

 Classification is a process of assigning a particular input to tha name of the class to which it belongsto.

Classification is an important component in many problem-solving tasks.

 But often classification is embedded inside another operation.

For eg:

 If: the current goal is to get from place A to place B and there is a wall seperating two places

Page 106 Artificial Intelligence

Then look for a Doorway in the wall and through it.

 To use this rule successfully, the system ‘s matching routine must be able to identify an object as

awall. Without this the rule can never be invoked.

 Then to apply the rule, the system must be able to recognize the a doorway.

 Before classification is done, the classes it will use must be defined. This can be done in variety

of ways:

 Isolate a set of features that are relevant to task domain. Define each class by some values of

thesefeatures.

Eg: for weather predictions the parameters can be of rainfall, sunny, cloudy.

 Isolate a set of features that are relevant to the task domain. Define a class as a structure

composedof those features.

For example, if the task is to identify animals, the body of each type of animal can be stored as

structureand various features like color, length of a neck can be represented. The task of constructing class

definitions is called concept learning or Induction.

Let us the learn the techniques to define classes structurally.

Winston’s Learning Program:

 Winston describes an early structural concept learning program.

Its goal is to construct representations of the definitions of concepts in the block’s domain.

For eg : it learned the concepts, House tent and Arch

Page 107 Artificial Intelligence

To objects marry if they have faced that touch each and they have a common edge.

The marry relation is critical in the definition of arch. It is the difference between the first arch and near

miss arch structure. In fig 17.2

Page 108 Artificial Intelligence

Page 109 Artificial Intelligence

Decision Trees:

Page 110 Artificial Intelligence

UNIT-V

What is an Expert System?

An expert system is a computer program that is designed to solve complex problems and to provide

decision-making ability like a human expert.

It performs this by extracting knowledge from its knowledge base using the reasoning and inference rules

according to the user queries.

The system helps in decision making for complex problems using both facts and heuristics like a human

expert.

It is called so because it contains the expert knowledge of a specific domain and can solve any complex

problem of that domain.

These systems are designed for a specific domain, such as medicine, science, etc.

The performance of an expert system is based on the expert's knowledge stored in its knowledge base.

The more knowledge stored in the KB, the more that system improves its performance.

One of the common examples of an ES is a suggestion of spelling errors while typing in the Google search

box.

Examples of the Expert System:

MYCIN: It was one of the earliest backward chaining expert systems that was designed to find bacteria

causing infections like bacteremia and meningitis. It was also used for the recommendation ofantibiotics

and the diagnosis of blood clotting diseases.

PXDES: It is an expert system that is used to determine the type and level of lung cancer. To determine

the disease, it takes a picture from the upper body, which looks like the shadow. This shadow identifies

the type and degree of harm.

Cadet: The Cadet expert system is a diagnostic support system that can detect cancer at early stages

Representing and using Domain knowledge:

The R1 program internally called XCON, for eXpert CONfigurer was a production-rule-based system to

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge

Acquisition.

Page 111 Artificial Intelligence

assist in the ordering of DEC's VAX computer systems by automatically selecting the computer system

components based on the customer's requirements.

It eventually had about 2500 rules.

Rule of Xcon that configures DEC VAX system.

If: the most current active context is distributing mass bus devices and

There is a single-port disk drive that has not been assigned to a mass bus and

There are no unassigned dual port disk drives and the number of devices that each mass bus should

support is known and,

There is a mass bus that has been assigned at least one disk drive and that should support additional

disk drives,

And the type of cable needed to connect the disk drive to the previous device on the mass bus is

known.

Then: assign the disk drive to the mass bus

 As RI is doing a design task (in contrast to the diagnosis task performed by MYCIN) it is not necessary

to consider all the possible alternatives one good one is enough. As a result, probabilistic information is

notnecessary in R1.

PROSPECTOR is a program that provides advice on mineral exploration. It‘s rule looks like this:

IF: magnetite and pyrite is disseminated or veinlet form is present

Then(2,-4) there is a favorable mineralization and texture for the propylitic stage

Here each rule contains two estimates.

The first indicates that the presence of evidence described in the condition part of the rule suggests the

validity of the rules conclusion.

The second measures the extent to which the evidence is necessary to the validity of the conclusion.

2 indicates the presence of the evidence is encouraging.

-4 indicates that the absence of the evidence is slightly discouraging.

Reasoning with knowledge

■ Expert systems exploit many of the representation and reasoning mechanisms that we have discussed.

■ Because these programs are usually written primarily as rule-based systems, forward chaining

andbackward chaining are usually used.

Page 112 Artificial Intelligence

■ For ex: MYCIN used backward chaining to discover what organisms are present. And then uses forward

chaining to reason from the organisms to a treatment regime.

■ RI on the other hand uses Forward chaining.

Expert system Shells

A new expert system can be developed by adding domain knowledge to the shell. The figure depicts

generic components of an expert system.

 Knowledge acquisition system: It is the first and fundamental step. It helps to collect the

expert’sknowledge required to solve the Problems and build the knowledge base.

 Knowledge Base: This component is the heart of expert systems. It stores all factual and heuristic

knowledge about the application domain. It provides various representation techniques for all thedata.

 Inference mechanism: Inference engine is the brain of the expert system. This component is mainly

responsible for generating inference from the given knowledge from the knowledge base and produce

lineof reasoning in turn the result of the user's query.

 Explanation subsystem: This part of shell is responsible for explaining or justifying the final

or intermediate result of user query. It is also responsible to justify the need of additional

knowledge.

 User interface: It is the means of communication with the user. It decides the utility of expert system.

Page 113 Artificial Intelligence

 Building expert systems by using shells has significant advantages. It is always advisable to use shell to

develop expert systems as it avoids building the system from scratch.

 To build an expert system using system shell, one needs to enter all necessary knowledge about a task

domain into the shell.

Explanation:

An expert system is said to be effective when people can interact with it easily.

To facilitate the interaction, t h e expert system must have the following two properties:

1. Explain its reasoning: In many of the domains in which experts’ systems operate, people will

notaccept results unless they have been convinced of the accuracy of the of the reasoning process

that produced those results.

An expert system is said to be effective when people can interact with it easily.

2. Acquire new knowledge and modifications of old knowledge: since expert systems derive their

power from the richness of the knowledge bases, they is exploit it, it is extremely important

that those knowledge bases be complete and as accurate as possible

One way to get the knowledge into a program is through interaction with the human expert. Or to have a

program that learns the expert behavior from raw data.

 TEIRESIAS was the first program to support explanation and knowledge acquisition.

TEIRESIAS served as a front end for the MYCIN expert system.

The program asks for a piece of information that it needs to continue its reasoning.

The doctor wants to know why the program wants the information and later asks the how the program

arrived at a conclusion that it claimed had reached.

 Mycirn attempts to solve its goal of recommending a therapy for a particular patient by first

finding thecause of the patient ‘s illness.

 It uses its production rules to reason backward from goals to clinical observations.

 To solve the top- level diagnostic goal, it looks for rules whose right side suggests diseases.

 It then uses the left sides of those rules(preconditions) to set up subgoals.

 These subgoals are again matched against rules and their preconditions are used to set up additional

goals.

 Whenever a precondition specifies a specific piece of clinical evidence, m y c i n uses that evidence,

Page 114 Artificial Intelligence

otherwise, it asks the user to provide the information.

 The actual goal that MYCIN set up are more general than the they need to specify the preconditions

of a individual rule.

For ex:

 If a precondition satisfies that the identity of a organism X , MYCIN will set up the goal ―infer

identity‖

 The first Question that the user asks is WHY? Why do you need to know that?

 Because the clinical tests are either expensive or dangerous..

 It is important for the doctor to be convinced that the information is really needed before ordering

the test.

Because MYCIN is reasoning backward the question can be easily answered by examining the goal tree.

● The user can ask the question How did you know that?

● The question can be answered by looking at the goal tree and chaining backward from the stated fact to

the evidence that allowed a rule that determined the fact to fire.

Knowledge Acquisition:

● How are experts’ system built?

Knowledge Engineer Interviews domain experts and to get the clear knowledge and the they are

translated into rules- This process is expensive and time consuming.

● Look for Automatic ways of constructing expert knowledge bases, but no automatic knowledge

acquisition systems exist yet.

● But there are programs that interact with domain experts to extract knowledge efficiently.

● These programs provide supports for the following activities:

1. Entering knowledge

2. maintaining Knowledge base consistency

3. Ensuring Knowledge base completeness.

● The most useful knowledge acquisition programs are those that are restricted to a particular problem-solving

paradigm eg: diagnosis or design.

● If the paradigm is diagnosis then the program can structure its knowledge base around symptoms,

hypothesis and causes.

Page 115 Artificial Intelligence

● It can identify symptoms for which the expert system has not yet provided causes.

● Since one system have many multiple causes the program can ask for knowledge about how to decide

when one hypothesis is better than another.

● MOLE is a knowledge acquisition system for heuristic classification problems, such as diagnosing

diseases.

● It used in conjunction with COVER AND DIFFERENTIATE problem solving method.

● An Expert system produced by MOLE accepts input data, comes up with a set of candidate explanations

or classifications that cover(explain) the data., the uses differentiating knowledge to determine which

oneis best.

● MOLE interacts with human experts to produce a knowledge base that a system called MOLE- p

(performance) uses to solve problems.

The acquisition proceeds through several steps:

1. Initial knowledge base construction. MOLE asks the expert to list common symptoms or

complaints that might require diagnosis.

For each symptom, MOLE prompts a list of possible explanations.

Whenever an event has multiple explanations, MOLE tries to determine the conditions under which the

explanation is correct.

The expert provides COVERING knowledge, that is the knowledge that if a hypothesized event does

occur,then the symptom will appear.

2. Refinement of knowledge Base:

MOLE now tries to identify the weaknesses of the knowledge base. One approach is to find holes and

promptthe expert to fill them.

MoLE lets the expert watch MOLE-P solving sample problems.

Whenever MOLE-p makes an incorrect diagnosis, the expert adds new knowledge.

For Ex: suppose we have a patient with Symptoms A and B. Further suppose that symptom A could be

caused by the events X and Y, and that symptom B can be caused by Y and Z.

MOLE-p may conclude Y, since it explains both A and B.

If the expert indicates that this decision was incorrect, then MOLE will ask what evidence should be used

tp prefer X and/or Z over Y

Page 116 Artificial Intelligence

● Suppose if our task is to design an artifact for eg: an elevator system, then we must assign values to large

number of parameters such as width of the platform, the type of door,the cable weight, cable strength.

● These parameters must be consistent with each other, and they must result in the design that satisfies

external constraints imposed by cost factors, the type of building involved and the expected

payloads.

● One problem solving method useful for design tasks is called propose and Revise.

● Here the system first proposes an extension to the current design. Then it checks whether the extension

violates any global or local constraints.

● Constraints violations are fixed and the process repeats.

● It turns out that domain experts are good at listing overall design constraints and providing local

constraints on the individual parameters, but not so good at explaining how to arrive at global

solutions.

● The SALT program provides mechanisms for elucidating this knowledge from the expert.

● SALT builds a dependency network as it converses with the expert.

● Each node stands for a value of a parameter that must be acquired or generated.

● There are three kinds of links:

● Contributes–to, c o n s t r a i n s , suggests-revision-of

● Contributes- to link are procedures that allows SALT to generate a value for one parameter based onthe

value of another.

● Constraints rule out certain parameter values.

● Suggests -revision- of link points to ways in which a constrain violation can be fixed.

SALT uses the following heuristics to guide the acquisition process:

1. Every non-input node in the network needs at least one link coming into it.If links are missingthe

expert is asked to fill it.

2. No contribute-to loops are allowed in the network. If a loop exists, SALT tries to transform one of

the contributors to links into constrains links.

3. Constrains links should have Suggests-revision-of links associated with them.

Page 117 Artificial Intelligence

● These include constrain links that are created when dependency loops are broken.

● SALT compiles its dependency network into a set of production rules.

● Consider a bank ‘s problem in deciding whether to approve a loan a loan.

● One approach to automate this task is to interview loan officers to extract domainknowledge.

● Another approach is to inspect the records of loans the bank has made in the past and try to generate

rules automatically that will maximize the number of good loans and minimize the number of bad ones in

the future.

● META DENDRAL was the first program to use learning techniques to construct rules for the

expert system automatically.

	(Autonomous Institution – UGC, Govt. of India)
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	III Year B.Tech. IT-I Sem LT/P/D C
	(R20A0513) ARTIFICIAL INTELLIGENCE
	UNIT - I
	UNIT - II
	UNIT - III
	UNIT - IV
	UNIT - V
	TEXT BOOK:
	REFERENCE BOOKS:
	COURSE OUTCOMES:

	UNIT- I
	Introduction:
	Sub Areas of AI:
	2) Speech Recognition
	3) Computer Vision
	4) Expert Systems
	c. Financial Decision Making
	d. Classification Systems
	5) Mathematical Theorem Proving
	6) Natural Language Understanding
	7) Scheduling and Planning
	8) Artificial Neural Networks:
	Applications of AI:

	Building AI Systems:
	1) Perception
	2) Reasoning
	3) Action
	The definitions of AI:
	Intelligent Systems:
	Cognitive Science: Think Human-Like
	Laws of thought: Think Rationally
	Turing Test: Act Human-Like
	Rational agent: Act Rationally
	Agent:
	Percept:
	Percept Sequence:
	Agent function:
	Agent program

	Agent function
	What is rational at any given time depends on four things:
	Omniscience, L e a r n i n g and Autonomy:
	ENVIRONMENTS:

	Environment-Types:
	1. Accessible vs. inaccessible or fully observable vs Partially Observable:
	2. Deterministic vs. Stochastic:
	3. Episodic vs. non episodic:
	4. Static vs. dynamic.
	5. Discrete vs. continuous:
	STRUCTURE OF INTELLIGENT AGENTS
	Agent programs:
	Types of agents:
	Simple reflex agents:
	Model-based reflex agents:
	Goal-based agents:
	Utility-based agents:

	Problem Solving Agents:
	Goal Formulation:
	Problem Formulation:
	Initial State
	State Space Search/Problem Space Search:
	Formal Description of the problem:
	State-Space Problem Formulation:
	3. goal test (or set of goal states)
	4. path cost (additive)
	Example: 8-queens problem

	Search strategies:
	Properties of Search Algorithms
	State Spaces versus Search Trees:

	Searching
	Uninformed Search (Blind searches):
	1. Breadth First Search:
	BFS illustrated:
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Breadth first search is:
	b - branching factor (maximum no of successors of anynode), d – Depth of the shallowest goal node Maximum length of any path (m) in search space

	Disadvantages:
	Applications Of Breadth-First Search Algorithm

	Depth- First- Search.
	DFS illustrated:
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	FRINGE: G F E C
	Figure 6

	Iterative Deeping DFS
	Advantages:
	Disadvantages:
	M is the goal node. So we stop there.

	Informed search/Heuristic search
	Source state
	Source state (1)
	Destination state

	Hill Climbing Algorithm
	Different regions in the state space landscape:

	Problems in Hill Climbing Algorithm:
	Best First Search:
	Algorithm:
	Example:
	A* Algorithm
	Algorithm: (1)
	= () g(s)= 0, f(s)=h(s)
	3. Select : select the minimum cost state, n, from OPEN,
	4. Terminate : If n €G, Terminate with success and return f(n)
	a) If m € [OPEN U CLOSED] Set g(m) = g(n) + c(n , m) Set f(m) = g(m) + h(m)
	b) If m € [OPEN U CLOSED]
	, m)} Set f(m) = g(m) + h(m)
	Move m to OPEN.

	Constraint Satisfaction Problems
	Examples:
	Example: The map coloring problem.

	UNIT II
	Constructing Search Trees:
	Example:
	Properties of minimax:
	Limitations
	Example: (1)
	2) Look at first computed final configuration value. It’s a 3. Parent is a min node, so set the beta (min) value to 3.
	4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b.
	6) Max node is now done and we can set the beta value of its parent and propagate node state to sibling subtree’s left-most path.
	8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so the parent max node gets the alpha (max) value from the child. Note that if the max node had a 2nd subtree, we can prune it since a>b.
	10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other children exist, we propagate the value up the tree.
	AO * Search Algorithm In Artificial Intelligence With Example
	The path from A through B, E-F is better with a total cost of (17+1=18). Thus, we can see that to search an AND-OR graph, the following three things must be done.
	The propagation of revised cost estimation backward is in the tree is not necessary in A* algorithm. This is because in AO* algorithm expanded nodes are re-examined so that the current best path can be selected.
	• There are three factors which are put into the machine, which makes it valuable:
	PROPOSITIONAL LOGIC:
	First-order logic:
	Drawbacks of Propositional Logic
	SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC
	Symbols and interpretations
	For Example:
	Atomic sentences
	Existential quantification (∃)
	Equality
	The kinship domain
	Axioms:
	Axioms: Axioms without Definition
	Numbers, sets, and lists Number theory
	Sets
	Vocabulary of set theory:
	Forward Chaining and backward chaining in AI
	Inference engine:
	a. Forward chaining
	A. Forward Chaining
	Facts Conversion into FOL:
	American (p) 𝖠 weapon(q) 𝖠 sells (p, q, r) 𝖠 hostile(r) → Criminal(p) ...(1)
	T1) (2)
	?p Missiles(p) 𝖠 Owns (A, p) → Sells (Robert, p, A) (4)
	Missile(p) → Weapons (p) (5)
	Enemy(p, America) →Hostile(p) (6)
	Enemy (A, America) (7)
	American(Robert) (8) Forward chaining proof:
	Example:
	o American (p) 𝖠 weapon(q) 𝖠 sells (p, q, r) 𝖠 hostile(r) → Criminal(p) ...(1) Owns(A, T1) (2)
	o ?p Missiles(p) 𝖠 Owns (A, p) → Sells (Robert, p, A) (4)
	o Enemy(p, America) →Hostile(p) (6)
	o American(Robert) (8)
	Step-2:
	What is Knowledge?
	Issues in knowledge representation
	1. Important attributes
	2. Relationships among attributes
	3. Choosing the granularity of representation
	4. Representing sets of objects.
	5. Finding the right structure as needed
	Non- M o n o t o n i c reasoning:
	ACTING UNDER UNCERTAINTY
	Summarizing Uncertainity:
	Axioms of Probability:
	Bayes Rule:

	UNIT-IV
	What is learning?
	Checkers game:
	Learning by taking advice:
	Learning in Problem Solving- learning by Parameter Adjustment
	Learning in Problem Solving-Learning with macro-operators:
	Learning in Problem Solving-Learning from chunking:
	Learning from Examples-Induction:
	Winston’s Learning Program:

	Decision Trees:
	UNIT-V
	Examples of the Expert System:

	Representing and using Domain knowledge:
	Reasoning with knowledge

	Expert system Shells
	Explanation:

	Knowledge Acquisition:

